Ir(mppy)3


Order Code: M2195A1
Price excludes taxes
Not in stock (price excludes taxes)
Price: Loading...

Pricing

Grade Order Code Quantity Price
Sublimed (>99% purity) M2195A1 100 mg £175.00
Sublimed (>99% purity) M2195A1 250 mg £350.00
Sublimed (>99% purity) M2195A1 500 mg £587.00
Sublimed (>99% purity) M2195A1 1 g £990.00

General Information

CAS number 149005-33-4
Full name Tris[2-(p-tolyl)pyridine]iridium(III)
Chemical formula C36H30IrN3
Molecular weight 696.86 g/mol
Absorption λmax 375 nm in DCM
Fluorescence λmax 515 nm in DCM
HOMO/LUMO HOMO = 5.6 eV, LUMO = 3.0 eV [1]
Synonyms Tris[2-(p-tolyl)pyridinium-1-yl] iridium(III)
Classification / Family Iridium complexes, Phosphorescent dopant materials, Phosphorescent green emitter, sublimed materials, Organic electronics.

Product Details

Purity Sublimed >99% (HPLC)
Melting point > 320 °C (0.5% weight loss)
Appearance Yellow powder/crystals

 

ir(mppy)3, CAS# 149005-33-4
Chemical structure of Ir(mppy)3; CAS No. 149005-33-4

Applications

Ir(mppy)3, Tris[2-(p-tolyl)pyridine]iridium(III), is widely used as a phosphorescent dopant which emits green light in highly efficient OLED and TADF-OLED devices. With three methyl groups attached to the ppy ligands, Ir(mppy)is more soluble than the widely known green emitter Ir(ppy)3.

When it is co-doped with Ir(ppz)3, Ir(mppy)3 devices show a slower efficiency roll-off and higher electroluminescent efficiencies due to improved recombination probability and suppressed exciton quenching.

Device structure ITO/HAT-CN(10 nm)/HAT-CN:TAPc(2:1, 60 nm)/TAPc(20 nm)/TcTa:Be(pp)2:Ir(mppy)(1:1:8 wt% 10 nm)/Be(pp)2:Liq (1:10%, 35 nm)/Liq(1 nm)/Al(1 nm)/HAT-CN(20 nm)/HAT-CN:TAPC(2:1, 10 nm)/TAPC(40 nm)/ TcTa:Be(pp)2:Ir(mppy)3 (1:1:8 wt% 10 nm)/Be(pp)2(15 nm)/Be(pp)2:Liq (1:10%, 35 nm)/Liq(1 nm)/Al(100 nm) [1]
Colour Green  green
Max. Current Efficiency 241 cd/A
Max. Power Efficiency 143 lm W1  
Device structure    ITO (150 nm)/HAT-CN (4 nm)/VB-FNPD* (35 nm)/TCTA:Ir(mppy)3 10 wt% (20 nm)/TPBi (60 nm)/ CsF (1 nm)/Al (120 nm) [2]
Colour Green   green
Max. EQE  14.7%
Max. Current Efficiency 50.9 cd/A
Max. Power Efficiency 55.0 lm W1  
Device structure                                            ITO/PEDOT:PSS (50 nm)/TCTA (30 nm)/26DCzPPy:Ir(mppy)3 94:6 (40 nm)/TPBI (40 nm)/LiF (0.8 nm)/Al (100 nm)  [3]
Colour Green    green
Current Efficiency @ 1000 cd/m2 41.9 cd/A
Power Efficiency @ 1000 cd/m2 23.4 lm W1  
Device structure  ITO/PEDOT:PSS/ PVK :OXD-7:Ir(mppy)3 (60:40:4, w/w)/TrOH*/Al [4]
Colour Green green
Max. Luminance 18,050 cd/m2
Max. EQE 6.7%
Max. Current Efficiency 23.4 cd/A
Device structure  ITO/Clevios HIL 1.5 (30 nm)/a-NPD (20 nm)/HTEB-2 (10 nm)/1 wt% Ir(mppy)3:PIC-TRZ (25 nm)/TPBi (35 nm)/LiF (0.8 nm)/Al (100 nm) [5]
Colour Green green
Max. EQE 20.3%
Max. Current Efficiency 74 cd/A

*For chemical structure information, please refer to the cited references

 

Literature and Reviews

  1. Highly efficient and stable tandem organic light-emitting devices based on HAT-CN/HAT-CN:TAPC/TAPC as a charge generation layer, Y. Dai et al., J. Mater. Chem. C, 3, 6809-6814 (2015);DOI: 10.1039/C4TC02875A.
  2. High-Performance Hybrid Buffer Layer Using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile/Molybdenum Oxide in Inverted Top-Emitting Organic Light-Emitting Diodes, C-H. Park et al., ACS Appl. Mater. Interfaces, 7 (11), 6047–6053 (2015); DOI: 10.1021/am5091066.
  3. Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency, Y-F. Chang et al., Appl. Phys. Lett.,114, 123101 (2013); doi: 10.1063/1.4821881.
  4. Efficient phosphorescent polymer light-emitting devices using a conjugated starburst macromolecule as a cathode interlayer, X. Zhang et al., RSC Adv., 6, 10326 (2016); DOI: 10.1039/c5ra19156d.
  5. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter, H. Fukagawa et al., Sci. Rep., 5:9855 (2015); DOI: 10.1038/srep09855.
  6. Highly efficient green single-emitting layer phosphorescent organic light-emitting diodes with an iridium(III) complex as a hole-type sensitizer, R. Wu et al., J. Mater. Chem. C, 7, 2744-2750 (2019); DOI: 10.1039/C8TC06509H.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.