Ir(ppy)3

Order Code: M481
MSDS sheet

Price

(excluding Taxes)

£158.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.5% purity) M481 100 mg £158
Unsublimed (>99.5% purity) M482 250 mg
£166
Sublimed (>99.5% purity) M481 250 mg £329
Unsublimed (>99.5% purity) M482 500 mg £263

General Information

CAS number 94928-86-6
Chemical formula C33H24IrN3
Molecular weight 654.78 g/mol
Absorption λmax 282, 377 nm in THF
Fluorescence λem 513 nm in THF
HOMO/LUMO HOMO 5.6 eV, LUMO 3.0 eV
Synonyms
  • Tris[2-phenylpyridine]iridium(III)
  • Tris(2-phenylpyridinato)iridium(III)
  • Tris[2-phenylpyridine-c2,n]iridium(III)
  • Tris(2-phenylpyridine)iridium(III)
Classification / Family Organometallic complex, Green emitter, Phosphorescence dopant OLEDs, Sublimed materials

 

Product Details

Purity

 >99.5% (sublimed)

>99.5% (unsublimed)

Melting point 451 °C
Colour Yellow powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

 Irppy3 chemical structure
 
Chemical Structure of tris(2-phenylpyridine)iridium [Ir(ppy)3]; CAS No. 94928-86-6; Chemical Formula C33H24IrN3

 

Applications

Tris(2-phenylpyridine)iridium(III), Ir(ppy)3, is used widely in organic light-emitting diodes (OLEDs) due to its high quantum yields and thermal stability.

Utilising all of its singlet and triplet excitons for the emission, this green light emitting Ir(ppy)3 exhibits a very bright phosphorescence with an internal quantum yield of almost 100% [1, 2, 3]. It is one of the most successful green-triplet emitters in the rapidly developing field of OLED display technology.

 

Device structure                                            ITO/α-NPD* (50 nm)/7%-Ir(ppy)3:CBP (20 nm)/BCP (10 nm)/tris(8-hydroxyquinoline)aluminum (Alq3) (40 nm)/Mg–Ag (100 nm)/Ag (20 nm)  [4]
Colour Green  green
Max EQE (12.0±0.6)%
Max. Powder Efficiency (45±2) lm W1

 

Device structure                                            ITO/α-NPD* (40 nm)/6%-Ir(ppy)3:CBP (20 nm)/BCP (10 nm)/tris(8-hydroxyquinoline)aluminum (Alq3) (20 nm)/Mg–Ag (100 nm)/Ag (20 nm)  [5]
Colour Green  green
Max EQE 8%
Max. Current Efficiency 28 cd/A
Max. Powder Efficiency 31 lm W1

 

Device structure ITO/PEDOT:PSS (50 nm)/poly-TCZ (35 nm)/1*:Ir(ppy)3 (94:6 wt%)(20 nm)/TAZ (50 nm)/LiF (2.5 nm)/Al (40 nm)/Ag (100 nm) [6]
Colour Blue  blue
Max. Luminance 47,000 cd/m2
Max. Current Efficiency 81.1 cd/A
Max. EQE 25.2%
Max. Power Efficiency 46.8 lm W−1 

 

Device structure ITO/MoO3 (3 nm)/CBP: 20 wt% Ir(ppy)3: 4 wt% FIrpic (30 nm)/TAZ (50 nm) [7]
Colour Green  green
Max. Luminance 27,524 cd/m2
Max. Current Efficiency 71.2 cd/A

 

Device structure 

ITO/NPD/5%BCzVBi:CBP/CBP/4%PQIr*:CBP/5%Ir(ppy)3:CBP/CBP/5%BCzVBi:CBP/

LiF/Al [8]

Colour  White  white
Max EQE 11.0 ± 0.3%
Max. Power Efficiency 22.1 ± 0.3lm W1

 

Device structure                                            ITO/0.4 wt% F4TCNQ doped α NPD (30 nm)/ 5 wt% Ir (ppy)3 doped CBP (50 nm)/BPhen (30 nm)/20 wt% TCNQ mixed BPhen (1.5 nm)/Al [9]
Colour Green  green
Luminance@15 V 1,320 cd/m2 
Power Efficiency@14 V 56.6 lm W1  
Current Efficiency@14 V 23.17 cd/A

*For chemical structure information please refer to the cited references

Characterisations

HPLC-ir(ppy)3

HPLC trace of tris(2-phenylpyridine)iridium [Ir(ppy)3]

Literature and Reviews

  1. Absorption and emission spectroscopic characterization of Ir(ppy)3, W. Holzer et al., Chem. Phys., 308(1-2), 93-102 (2005), doi:10.1016/j.chemphys.2004.07.051.
  2. The Triplet State of fac-Ir(ppy)3, T. Hofbeck et al., Inorg. Chem., 49 (20), 9290–9299 (2010), DOI: 10.1021/ic100872w.
  3. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, M. A. Baldo et al., Nature 403, 750-753 (2000) | doi:10.1038/35001541.
  4. Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film, C. Adachi et aL., Org. Electronics, 2(1), 37-43 (2001), doi:10.1016/S1566-1199(01)00010-6.
  5. Very high-efficiency green organic light-emitting devices based on electrophosphorescence, M. A. Baldo et al., Appl. Phys. Lett. 75, 4 (1999); http://dx.doi.org/10.1063/1.124258.
  6. Efficient blue-emitting electrophosphorescent organic light-emitting diodes using 2-(3,5-di(carbazol-9-yl)-phenyl)-5-phenyl-1,3,4-oxadiazole as an ambipolar host, Y. Zhang et al., RSC Adv., 3, 23514 (2013). DOI: 10.1039/c3ra43720e.
  7. Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter, Y. Miao et al., RSC Adv., 5, 4261 (2015). DOI: 10.1039/c4ra13308k.
  8. Management of singlet and triplet excitons for efficient white organic light-emitting devices, Y. Sun, et al, Nature 440, 908-912 (2006), doi:10.1038/nature04645.
  9. Novel organic electron injection layer for efficient and stable organic light emitting diodes, R. Grover et al., J. Luminescence, 146, 53–56 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.09.004.
  10. Upconverted Emission from Pyrene and Di-tert-butylpyrene Using Ir(ppy)3 as Triplet Sensitizer, W. Zhao et al., Phys. Chem. A, 110 (40), 11440–11445 (2006), DOI: 10.1021/jp064261s.
  11. High-efficiency organic electrophosphorescent devices with tri(2-phenylpyridine)iridium doped into electron-transporting materials, C. Adachi et al., Appl. Phys. Lett., 77 (6), 904-906 (2000).
  12. High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers, G. He et al., Appl. Phys. Lett. 85, 3911 (2004); http://dx.doi.org/10.1063/1.1812378.