Ir(ppz)3

Order Code: M721
MSDS sheet

Price

(excluding Taxes)

£177.00


General Information

CAS number 562824-31-1
Chemical formula C27H21IrN6
Molecular weight 621.71 g/mol
Absorption λmax 321 nm (2-MeTHF) [1]
Fluorescence λem 414 nm (2-MeTHF)
HOMO/LUMO HOMO = 5.0 eV, LUMO = 1.6 eV
Synonyms Tris(1-phenylpyrazolato)iridium; tris(phenylpyrazole)iridium
Classification / Family

Iridium complex, Electron blocking layer (EBL) materials, Hole transport layer (HTL) materials, Organic Light-Emitting Diodes (OLEDs), Organic photovoltaics, Organic electronics

 

Product Details

Purity Sublimed* >99.5%
Melting point No data available
Colour Light yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages, from a solid state to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemical structure of Ir(PPZ)3 - Tris(phenylpyrazole)iridium

Chemical structure of Tris(phenylpyrazole)iridium - Ir(ppz)3, CAS no. 562824-31-1.

Applications

Tris(phenylpyrazole)iridium, known as Ir(ppz)3, features a small lowest unoccupied molecular orbital (LUMO) of around 1.6 eV. It has been normally used as an electron-blocking layer (EBL) in organic light emitting diodes and other organic electronic devices such as organic photovoltaics.

It has also been reported that Ir(ppz)3 doping can enhance low wavelength optical absorption capacity and doping a small amount of Ir(ppz)3 can also improve the crystallinity of P3HT. Moreover, the large energy barrier between Ir(ppz)3 and the polymer active layer, which can reduce the electron current densities and increase the hole current densities, indicates a more balanced carrier transport based on hole- and electron-only devices [2]

 

Device structure ITO/PSS:PEDOT/P3HT:PCBM:0.1 wt% Ir(ppz)3/LiF/Al [2]
JSC (mA cm-2) 11.8
VOC (V) 0.61
FF (%) 59
PCE 4.24

 

Device structure  Ag (80 nm)/MoO3 (2 nm)/MeO-TPD*:3 wt% F4-TCNQ (30 nm)/MeO-TPD (10 nm)/Ir(PPZ)3 (10 nm)/TCTA:8 wt% FIrpic:2% PO-01 (12 nm)/SPPO1:8 wt% FIrpic (15 nm)/BPhen (10 nm)/Bphen:3 wt% Li (20 nm)/Ag (14 nm) [3]
Colour White white
Max. Luminance 23,340 cd/m2
Max. Power Efficiency 15.39 lm W1
Max. Current Efficiency 24.49 cd/A  
Turn-on Voltage 3.1 V

 

Device structure ITO/m-MTDATA (45nm)/Ir(ppz)3 (10 nm)/CBP:PO-01 (5 nm,6wt%)/Ir(ppz)3 (1 nm)/MADN: DSA-Ph* (25 nm,5wt%)/ BPhen (50 nm)/LiF(1nm)/Al(100 nm) [4]
Colour White white
Current Efficiency 21.0 cd/A@2, 300 cd/m2
20.1 cd/A@9, 300 cd/m2
CIE

(0.41,0.46) to (0.40,0.46) over 103 – 104 cd/m2

 

Device structure ITO (180 nm)/TAPC (60 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [5]
Colour Blue  blue
Luminance@200 cd/m2 32,570 cd/m2
Max. Current Efficiency 43.76 cd/A
Max. EQE 23.4%
Max. Power Efficiency 21.4 lm W−1 
Device structure ITO/MoOx (2 nm)/m-MTDATA:- MoOx (3:1, 10 nm)/m-MTDATA (30 nm)/Ir(ppz)3 (10 nm)/DBFPPO:FIrpic (10:1, 10 nm)/3TPYMB (10 nm)/BPhen (30 nm)/LiF(1 nm)/Al [6]
Colour Blue  blue
Max. Current Efficiency 35.5 cd/A
Max. EQE 15.5%
Device structure ITO/m-MTDATA: MoOx (10 nm, 15 wt %)/m-MTDATA (30 nm)/Ir(ppz)3 (15 nm)/ mCP:FIrpic (5 nm, 10 wt %)/BPhen (2 nm)/mCP:(FBT)2Ir(acac) (5 nm, 6 wt %)/BPhen (40 nm)/LiF (1 nm)/ Al (100 nm) [7]
Colour White white
EQE@10 mA/cm2 12.5 %
CIE (0.27 ± 0.01, 0.40 ± 0.01)  over 103 – 104 cd/m2

 

Device structure ITO/MoOx (2 nm)/m-MTDATA: MoOx (30 nm, 15 wt.%)/m-MTDATA
(10 nm)/Ir(ppz)3 
(10 nm)/CBP:PO-01* (3 nm, 6 wt.%)/Ir(ppz)3
(1 nm)/DBFDPOPhCz*:FIrpic (10 nm,10 wt.%)/Bphen (36 nm)/LiF
(1 nm)/Al [8]                   
Colour White  white
Max. EQE 12.2%
Max. Current Efficiency 42.4 cd/A
Max. Power Efficiency 47.6 lm W1

*For chemical structure information please refer to the cited references.

 

Characterisation

hplc irppz3

HPLC trace of Ir(PPZ)3 - Tris(phenylpyrazole)iridium.

 

Literature and Reviews

  1. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands, T. Sajoto et al., Inorg. Chem., 44 (22), 7992-8003(2005); DOI: 10.1021/ic051296i.
  2. Performance Improvement in Poly(3-hexylthiophene):[6,6]-Phenyl C61 Butyric Acid Methyl Ester Polymer Solar Cell by Doping Wide-Gap Material Tris(phenylpyrazole)iridium, C-S. Ho et al., Appl. Phys. Express 6, 042301 (2013); http://dx.doi.org/10.7567/APEX.6.042301.
  3. Flexible top-emitting warm-white organic light-emitting diodes with highly luminous performances and extremely stable chromaticity, H. Shi et al., Org. Electronics 15 (2014) 1465–1475; doi:10.1016/j.orgel.2014.03.031.
  4. Hybrid white organic light-emitting diodes with improved color stability and negligible efficiency roll-off based on blue fluorescence and yellow phosphorescence, X. Wang et al., J. Luminescene, 137, 59–63 (2013); http://dx.doi.org/10.1016/j.jlumin.2012.12.031.
  5. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
  6. Towards Highly Efficient Blue-Phosphorescent Organic Light-Emitting Diodes with Low Operating Voltage and Excellent Efficiency Stability, C. Han et al., Chem. Eur. J., 17, 445 – 449 (2011); DOI: 10.1002/chem.201001981.
  7. Tailoring the Efficiencies and Spectra of White Organic Light-Emitting Diodes with the Interlayers, G. Xie et al., J. Phys. Chem. C 2011, 115, 264–269; DOI: 10.1021/jp107319e.
  8. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014); http://dx.doi.org/10.1016/j.synthmet.2013.11.010.