FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M2306A1-50mg
Price $312 ex. VAT

L8-BO-F, highly efficient non-fullerene acceptor

Higher solubility and morphology than L8-BO, giving impressive device performances


Specifications | Pricing and Options | MSDS | Literature and Reviews


Structurally, L8-BO-F has the same thienothienopyrrolo-thienothienoindole (TTP-TTI) core units as L8-BO (L8-BO-2F) with mono-fluorinated peripheral 2-(5 or 6-fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile end-groups.

L8-BO-F is another highly efficient non-fullerene acceptor that belongs to Y6 family. Similar to L8-BO, it has a branched 2-butyloctyl side chain which not only promotes solubility but also improves the morphology to achieve better packed film with higher intermolecular stackings, balanced charge transport and to reduce charge combination. L8-BO-F is also believed to suppresses the non-radiative recombination leading to a reduce the voltage loss.

High efficient non-flullerene acceptor

High efficient non-fullerene acceptor

With highly conjugated core

Improved film quanlity

Improved film quality

Owing to the branched butyloctyl side chain

Worldwide shipping

Worldwide shipping

Quick and reliable shipping

High purity

High purity

>99% pure

Outstanding device performance with PCE of 18.66% has achieved while a binary BTP-eC9 and L8-BO-F non-fullerene acceptors were used with polymer donor PM6. The polymer donor and mixed NFAs give complementary absorptions in the visible and NIR region with well matched energy alignment.

Device structure: ITO/PEDOT:PSS/PM6:BTP-eC9:L8-BO-F (1:1.2)/PNDIT-F3N/Ag

Thickness (nm) VOC (V) JSC (mA cm-2) FF (%) PCE (%)
100 0.853 27.35 80.00 18.66

General Information


CAS Number N/A
Chemical Formula C84H92F2N8O2S5
Purity >99% (1H NMR)
Full Name 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-(2-butyloctyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5 or 6-fluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile
Molecular Weight 1444.00 g/mol
HOMO / LUMO HOMO = -5.59 eV, LUMO = -3.85 eV [1]
Solubility Chloroform, chlorobenzene and dichlorobenzene
Form Dark blue powder/crystal
Synonyms L8-BO-F
Classification / Family BTP series NFAs, n-type non-fullerene electron acceptors, Organic semiconducting materials, Low band-gap small molecule, Small molecular acceptor, Organic photovoltaics, Polymer solar cells, NF-PSCs.

Chemical Structure


l8-bo-f, l8-bo
Chemical structure of L8-BO-F, highly efficient non-fullerene acceptor

MSDS Documentation


L8-BO-F MSDS sheetL8-BO-F MSDS sheet

Pricing


Batch Quantity Price
M2306A1 50 mg £240
M2306A1 100 mg £380
M2306A1 250 mg £780

*for 5 - 10 grams order quantity, the lead time is 4 - 6 weeks

Literature and Reviews


  1. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%, Y. Cai et al., Adv. Mater., 33 (33); 2101733 (2021); DOI: 10.1002/adma.202101733.
  2. A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells, Y. Li et al., Energy Environ. Sci., 14, 5009-5016 (2021); DOI: 10.1039/D1EE01864G.
  3. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells, C. Li et al., Nat. Energy, 6, 605–613 (2021); DOI: 10.1038/s41560-021-00820-x.

Related Products


Non-Fullerene Acceptors Collection

Non-Fullerene Acceptors

Non-Fullerene Acceptors

Non-fullerene acceptors (NFAs) are a promising alternative to fullerene-based electron acceptors.

Semiconducting Polymers Collection

Semiconducting Polymers

Semiconducting Polymers

Semiconducting polymers for bulk heterojunction, OPV, OLED, OFET and perovskite interfaces and solar cell research.

Organic Conductors Collection

Organic Conductors

Organic Conductors

Organic conductors are an environmentally friendly alternative to traditional inorganic conductors.

Return to the top