ADN - 9,10-Bis(2-naphthyl)anthrace

Order Code: M461
MSDS sheet

Price

(excluding Taxes)

£105.30


Pricing

Grade Order Code Quantity Price
Sublimed (>99.7%) M461 1 g £105.3
Sublimed (>99.7%) M461 5 g £359.6
Unsublimed (>98.9%) M462 5 g £152

 

General Information

CAS number 122648-99-1
Chemical formula C34H22
Molecular weight 430.54 g/mol
Absorption λmax 375,395 nm (in THF)
Fluorescence λem 425 nm (in THF)
HOMO/LUMO HOMO = 5.8 eV, LUMO = 2.6 eV
Synonyms ADN
9,10-di(naphth-2-yl)anthracene
9,10-di(2-naphthyl)anthracene 
Classification / Family Electron transporting materials, Light emitter layer materials, Phosphorescent host materials; Light-emitting diodes, Organic electronics

 

Product Details

Purity >99.7% (sublimed)
>98.9% (unsublimed)
Melting point 382-384 °C (lit.)
Colour White powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

 

ADN chemical stucture
Chemical Structure of 9,10-Bis(2-naphthyl)anthrace (ADN); CAS No. 122648-99-1; Chemical Formula C34H22.

Applications

9,10-Bis(2-naphthyl)anthracene (ADN), which is well known for its high thermal and morphological stability, is widely used as the host material for blue OLEDs [1, 2].

However, with the development of the co-doping technology*, 9,10-Bis(2-naphthyl)anthrace has also shown to be a promising host material for full colour OLEDs due to its wide energy band gap [3, 4, 5].

*The co-doping system is a novel technique for colour tuning and increasing the emission characteristics of OLEDs, and the two-step energy transfer in this system plays a very important role in colour tuning and improvement of the device performance.

 

Device structure                      ITO/NPB (60 nm)/BNA:2 wt% perylene (35 nm)/Alq3(25 nm)/Mg:Ag (200 nm) [6] (BNA is 9,10-Bis(2-naphthyl)anthrace, ADN)                                
Colour Blue  blue
Max. Luminance 4,000 cd/m2
Max. Current Efficiency      1.2 cd/A
Device structure                      ITO/NPB (60 nm)/BNA:2 wt% perylene and 0.5 wt% DCJTB* (35 nm)/Alq3 (25 nm)/Mg:Ag (200 nm)  [6] (BNA is 9,10-Bis(2-naphthyl)anthrace, ADN)
Colour White  white
Max. Luminance 4,100 cd/m2
Max. Current Efficiency      1.65 cd/A
Device structure  ITO (100 nm)/ NPB (40 nm)/ADN:C6:DCJTB (30 nm)/Alq3(30 nm)/LiF (1 nm)/Al (100 nm) [3]  
Colour Red  red
Max. Luminance 13, 000 cd/m2    
Max. Current Efficiency 4.9 cd/A                  
Device structure                     

ITO/NPB (70 nm)/ADN: 0.5% Rubrene (30 nm)/Alq3 (50 nm)/MgAg [7]

Colour White  white
Max. Luminance 11,700 cd/m2
Max. Current Efficiency 3.7 cd/A
Max. Power Efficiency 1.72 lm W-1
Device structure  ITO (80 nm)/m-MTDATA (20 nm)/NPB (20 nm)/[ADN:Alq3 (4:1)]:1wt.% DCJTB:0.2wt.%C545T/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [8]
Colour Red  red
Max. Luminance 11,600 cd/m2    
Max. Current Efficiency 3.6 cd/A                  
Device structure  ITO/ NPB (70 nm)/DPVBi:BCzVBi (15 wt%, 15 nm)/ADN:BCzVBi (15% wt%, 15 nm)/BPhen (30 nm)/ Liq (2 nm)/Al (100 nm) [9]
Colour Deep Blue deep blue
Max. Luminance       8,668 cd/m2
Max. Current Efficiency  5.16 cd/A

*For chemical structure informations please refer to the cited references

Characterisation

 

1H NMR of 9,10-Bis(2-naphthyl)anthrace, ADN
1H NMR of 9,10-Bis(2-naphthyl)anthrace (ADN) in CDCl3.
hplc 9,10-bis(2-naphthyl)anthrace, adn
HPLC trace of 9,10-di(2-naphthyl)anthracene, ADN.

Literature and Reviews

  1. Anthracene derivatives for stable blue-emitting organic electroluminescence devices, J. Shi et al., Appl. Phys. Lett. 80, 3201 (2002); http://dx.doi.org/10.1063/1.1475361.
  2. Study of the Hole and Electron Transport in Amorphous 9,10-Di-(2′-naphthyl)anthracene: The First-Principles Approach, H. Li et al., J. Phys. Chem. C, 117 (32), 16336–16342 (2013), DOI: 10.1021/jp4050868
  3. Highly Efficient and Stable Red Organic Light-Emitting Devices Using 9,10-Di(2-naphthyl)anthracene as the Host Material, H. Tang et al., Jpn. J. Appl. Phys. 46 1722 (2007), http://iopscience.iop.org/1347-4065/46/4R/1722.
  4. Green organic light-emitting diodes with improved stability and efficiency utilizing a wide band gap material as the host, H. Tang et al., Displays, 29 (5), 502-505 (2008), doi:10.1016/j.displa.2008.05.001.
  5. Improved efficiency for green and red emitting electroluminescent devices using the same cohost composed of 9,10-di(2-naphthyl) anthracene and tris-(8-hydroxyquinolinato) aluminum, J. Zhu et al., Physica E, 42 (2), 158-161 (2009), doi:10.1016/j.physe.2009.09.020.
  6. Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene, X. H. Zhang et al., Chem. Phys. Lett., 369 (3-4) 478-482 (2003), doi:10.1016/S0009-2614(02)02042-0.
  7. Efficient and stable single-dopant white OLEDs based on 9,10-bis (2-naphthyl) anthracene, S. Tao et al., J. Luminance, 121(2), 568-572 (2006); doi:10.1016/j.jlumin.2005.12.053.
  8. Red organic light-emitting diodes with high efficiency, low driving voltage and saturated red color realized via two step energy transfer based on ADN and Alq3 co-host system, K. Haq et al., Curr. Appl. Phys., 9, 257-262 (2009); doi:10.1016/j.cap.2008.02.005.
  9. Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi:10.1117/1.JPE.3.033598.