ADN - 9,10-Bis(2-naphthyl)anthrace

Order Code: M462
MSDS sheet

Price

(excluding Taxes)

£48.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.7% purity) M461 500 mg £95
Unsublimed (>98.9% purity) M462 1 g £48
Sublimed (>99.7% purity) M461 1 g
£163
Unsublimed (>98.9% purity) M462 5 g £152
Sublimed (>99.7% purity) M461 5 g £549

General Information

CAS number 122648-99-1
Chemical formula C34H22
Molecular weight 430.54 g/mol
Absorption λmax 375,395 nm (in THF)
Fluorescence λem 425 nm (in THF)
HOMO/LUMO HOMO 5.8 eV, LUMO 2.6 eV
Synonyms ADN, 9,10-di(naphth-2-yl)anthracene, 9,10-di(2-naphthyl)anthracene 
Classification / Family Electron transporting materials, Light emitter layer materials, Phosphorescent host materials; Light-Emitting Diodes, Organic electronics

 

Product Details

Purity

Sublimed* >99.7%

Unsublimed >98.9%
Melting point 382-384 °C (lit.)
Colour White powder

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

 ADN chemical stucture
Chemical Structure of 9,10-Bis(2-naphthyl)anthrace (ADN); CAS No. 122648-99-1; Chemical Formula C34H22

 

Applications

9,10-Bis(2-naphthyl)anthracene (ADN), which is well known for its high thermal and morphological stability, is widely used as the host material for blue OLEDs [1, 2].

However, with the development of the co-doping technology*, 9,10-Bis(2-naphthyl)anthrace has also shown to be a promising host material for full colour OLEDs due to its wide energy band gap [3, 4, 5].

*The co-doping system is a novel technique for colour tuning and increasing the emission characteristics of OLEDs, and the two-step energy transfer in this system plays a very important role in colour tuning and improvement of the device performance.

 

Device structure                      ITO/NPB (60 nm)/BNA:2 wt% perylene (35 nm)/Alq3(25 nm)/Mg:Ag (200 nm) [6] (BNA is 9,10-Bis(2-naphthyl)anthrace, ADN)                                
Colour Blue  blue
Max. Luminance 4,000 cd/m2
Max. Current Efficiency      1.2 cd/A

 

Device structure                      ITO/NPB (60 nm)/BNA:2 wt% perylene and 0.5 wt% DCJTB* (35 nm)/Alq3 (25 nm)/Mg:Ag (200 nm)  [6] (BNA is 9,10-Bis(2-naphthyl)anthrace, ADN)
Colour White  white
Max. Luminance 4,100 cd/m2
Max. Current Efficiency      1.65 cd/A

 

Device structure  ITO (100 nm)/ NPB (40 nm)/ADN:C6:DCJTB (30 nm)/Alq3(30 nm)/LiF (1 nm)/Al (100 nm) [3]  
Colour Red  red
Max. Luminance 13, 000 cd/m2    
Max. Current Efficiency 4.9 cd/A                  

 

Device structure                     

ITO/NPB (70 nm)/ADN: 0.5% Rubrene (30 nm)/Alq3 (50 nm)/MgAg [7]

Colour White  white
Max. Luminance 11,700 cd/m2
Max. Current Efficiency 3.7 cd/A
Max. Power Efficiency 1.72 lm W-1

 

Device structure  ITO (80 nm)/m-MTDATA (20 nm)/NPB (20 nm)/[ADN:Alq3 (4:1)]:1wt.% DCJTB:0.2wt.%C545T/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [8]
Colour Red  red
Max. Luminance 11,600 cd/m2    
Max. Current Efficiency 3.6 cd/A                  

 

Device structure  ITO/ NPB (70 nm)/DPVBi:BCzVBi (15 wt%, 15 nm)/ADN:BCzVBi (15% wt%, 15 nm)/BPhen (30 nm)/ Liq (2 nm)/Al (100 nm) [9]
Colour Deep Blue deep blue
Max. Luminance       8,668 cd/m2
Max. Current Efficiency  5.16 cd/A

*For chemical structure informations please refer to the cited references

Characterisation

 

1H NMR of 9,10-Bis(2-naphthyl)anthrace, ADN
1H NMR of 9,10-Bis(2-naphthyl)anthrace (ADN) in CDCl3.
hplc 9,10-bis(2-naphthyl)anthrace, adn
HPLC trace of 9,10-di(2-naphthyl)anthracene, ADN.

Literature and Reviews

  1. Anthracene derivatives for stable blue-emitting organic electroluminescence devices, J. Shi et al., Appl. Phys. Lett. 80, 3201 (2002); http://dx.doi.org/10.1063/1.1475361.
  2. Study of the Hole and Electron Transport in Amorphous 9,10-Di-(2′-naphthyl)anthracene: The First-Principles Approach, H. Li et al., J. Phys. Chem. C, 117 (32), 16336–16342 (2013), DOI: 10.1021/jp4050868
  3. Highly Efficient and Stable Red Organic Light-Emitting Devices Using 9,10-Di(2-naphthyl)anthracene as the Host Material, H. Tang et al., Jpn. J. Appl. Phys. 46 1722 (2007), http://iopscience.iop.org/1347-4065/46/4R/1722.
  4. Green organic light-emitting diodes with improved stability and efficiency utilizing a wide band gap material as the host, H. Tang et al., Displays, 29 (5), 502-505 (2008), doi:10.1016/j.displa.2008.05.001.
  5. Improved efficiency for green and red emitting electroluminescent devices using the same cohost composed of 9,10-di(2-naphthyl) anthracene and tris-(8-hydroxyquinolinato) aluminum, J. Zhu et al., Physica E, 42 (2), 158-161 (2009), doi:10.1016/j.physe.2009.09.020.
  6. Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene, X. H. Zhang et al., Chem. Phys. Lett., 369 (3-4) 478-482 (2003), doi:10.1016/S0009-2614(02)02042-0.
  7. Efficient and stable single-dopant white OLEDs based on 9,10-bis (2-naphthyl) anthracene, S. Tao et al., J. Luminance, 121(2), 568-572 (2006); doi:10.1016/j.jlumin.2005.12.053.
  8. Red organic light-emitting diodes with high efficiency, low driving voltage and saturated red color realized via two step energy transfer based on ADN and Alq3 co-host system, K. Haq et al., Curr. Appl. Phys., 9, 257-262 (2009); doi:10.1016/j.cap.2008.02.005.
  9. Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi:10.1117/1.JPE.3.033598.