NPB (NPD)

Order Code: M362
MSDS sheet

Price

(excluding Taxes)

£69.00


Pricing

 Grade Order Code Quantity Price
Unsublimed (>99.5% purity) M362 1 g £69
Sublimed (>99.9% purity) M361 1 g £119
Unsublimed (>99.5% purity) M362 5 g £169
Sublimed (>99.9% purity) M361 5 g £269

General Information

CAS number 123847-85-8
Chemical formula C44H32N2
Molecular weight 588.74 g/mol
HOMO/LUMO HOMO 5.5 eV, LUMO 2.4 eV
Absorption λmax 339 nm
Fluorescence λem 450 nm in THF
Synonyms

NPB, NPD

N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine

N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine

Classification / Family

Triphenylamines, Naphtalene, Hole transport layer materials, Electron block layer materials, Hole injection layer materials.

Organic Light-emitting Diodes (OLEDs), OFETs Organic Photovoltaics, Polymer Solar Cells, Perovskite Solar Cells

 

Product Details

Purity

Sublimed* >99.9%

Unsublimed >99.5%
Melting point 279-283 °C (lit.)
Colour Off-White powder

 *Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals only goes through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

Chemical Structure

 NPB NPD chemical structure

Chemical structure of N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)
CAS number 123847-85-8; Chemical formula C44H32N2

Applications

N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine, also known as NPB or NPD, has been used intensively in OLEDs and other organic electronic devices such as polymer photovoltaics (OPV) and perovskite solar cells for its outstanding hole transport capability. 

NPB is considered as one of the best materials within its competition, and has become the most common-used material in OLEDs' application, due to its increased Tg up to 95 °C, which is to enhance the device morphology and is beneficial for device longevity [1].

Device structure

ITO/NPB (30 nm)/NPB: DCJTB: C545T* (10 nm)/NPB (4 nm)/DNA (8 nm)/(BCP) (9 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [2]                      
Colour White white
Max. Luminance  13,600 cd/m2
Max. Current Efficiency 12.3 cd/A
Max. Power Efficiency 4.4 lm W1

 

Device structure

ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [3]                                          
Colour White white
Max. EQE 20.1%
Max. Power Efficiency 41.3 lm W1

  

Device structure ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [4]                      
Color White white
Max. EQE 17.5%
Max. Power Efficiency 45 lm W1

 

Device structure                                            ITO/2-TNATA:33% WO3 (100 nm)/NPB (10 nm)/Alq3 (30 nm)/Bphen (20 nm)/BPhen: 2% Cs (10 nm)/Al (150 nm) [5]
Color Green green
Operating Voltage for 100 cd/m2 3.1 V
Current Efficiency for 20 mA/cm2 4.4 cd/A
Power Efficiency for 20 mA/cm2 3.3 lm W1

 

Device structure                      ITO/2-TNATA (60 nm)/NPB (15 nm)/TAT* (30 nm)/ Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) [6]   
Color Deep Blue deep blue
EQE at 10 mA/cm2          7.18
Current Efficiency at 10 mA/cm2 3.64 cd/A
Power Efficiency at 10 mA/cm2 1.87 lm W1

 

Device structure                 ITO/[F4-TCNQ(x nm)/m-MTDATA(y nm)]n/NPB/Alq3/Bphen/Cs2CO3/Al [7]
Color Green green
Max. Luminance 23,500 cd/m2
Max. Current Efficiency 7.0 cd/A
Max. Power Efficiency 4.46 lm W1  

 

Device structure ITO/NPB (30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen(35 nm)/LiF (1 nm)/CoPc:C60 (4:1) (5 nm)/
MoO(5 nm)/NPB(30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen (35 nm)/Mg:Ag (100 nm) [8]
Color    Yellow yellow
Max. EQE 16.78%
Max. Luminance  42,236 cd/m2
Max. Current Efficiency 50.2 cd/A
Max. Power Efficiency 12.9 lm W1

  

Device structure                      ITO/NPB (60 nm)/BNA:2 wt% perylene and 0.5 wt% DCJTB* (35 nm)/Alq3 (25 nm)/Mg:Ag (200 nm)  [9] 
Color White white
Max. Luminance 4,100 cd/m2
Max. Current Efficiency 1.65 cd/A

 

Device structure  ITO (100 nm)/NPB (40 nm)/ADN:C6:DCJTB (30 nm)/Alq (30 nm)/LiF (1 nm)/Al (100 nm)
Color Red red
Max. Luminance 13, 000 cd/m2 [10]          
Max. Current Efficiency 4.9 cd/A                  

*For chemical structure information please refer to the cited references

Characterisations

1H NMR N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine NPB

1H NMR of N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) in CDCl3.

hplc npb

HPLC trace of N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB)

Literature and Reviews

  1. Organic electroluminescent devices with improved stability, S. A. Van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996); http://dx.doi.org/10.1063/1.117151.
  2. High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
  3. Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
  4. Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
  5. Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
  6. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design, S-K. Kim et al., J. Mater. Chem., 18, 3376–3384 (2008). DOI: 10.1039/B805062G.
  7. Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
  8. Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes, Z. Ma et al., Org. Electronics, 30, 136-142 (2016). doi:10.1016/j.orgel.2015.12.020
  9. Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene, X. H. Zhang et al., Chem. Phys. Lett., 369 (3-4) 478-482 (2003), doi:10.1016/S0009-2614(02)02042-0.
  10. Highly Efficient and Stable Red Organic Light-Emitting Devices Using 9,10-Di(2-naphthyl)anthracene as the Host Material, H. Tang et al., Jpn. J. Appl. Phys. 46 1722 (2007), http://iopscience.iop.org/1347-4065/46/4R/1722.
  11. C60/N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine:MoO3 as the interconnection layer for high efficient tandem blue fluorescent organic light-emitting diodes, X. Wu et al., Appl. Phys. Lett. 102, 243302 (2013); http://dx.doi.org/10.1063/1.4811551.
  12. High-Performance Hybrid White Organic Light-Emitting Devices without Interlayer between Fluorescent and Phosphorescent Emissive Regions, N. Sun et al., Adv. Mater., 26, 1617–1621 (2014)
  13. Single-Doped White Organic Light-Emitting Device with an External Quantum Efficiency Over 20%, T. Fleetham et al., Adv. Mater., 25, 2573–2576 (2013).