TAZ

Order Code: M601
MSDS sheet

Price

(excluding Taxes)

£104.00


General Information

CAS number 150405-69-9
Chemical formula C30H27N3
Molecular weight 429.56 g/mol
Absorption λmax 280 nm in chloroform
Fluorescence λem 372 nm in chloroform
HOMO/LUMO HOMO = 6.3 eV, LUMO = 2.7 eV [1]
Synonyms
  • TAZ
  • 3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole
Classification / Family

Triazole derivatives, Electron-injection layer materials (EIL), Electron-transport layer materials (ETL), Hole-blocking layer materials (HBL), Phosphorescent host materials, Organic light-emitting diodes (OLEDs), Organic electronics.

 

Product Details

Purity  >99.7% (sublimed)
Melting point  231-235 °C (lit.)
Appearance White powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

chemical structure of TAZ
Chemical Structure of 3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ); CAS No. 150405-69-9; Chemical Formula C30H27N3.

Applications

1,2,4-triazole-based 3-(biphenyl-4-yl)-5-(4-tertbutylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ) (ET: 2.7 eV, HOMO/LUMO: 6.3/2.7 eV) has mostly been used in blue phosphorescent OLEDs (PhOLEDs) to serve as an efficient electron-transporting and hole-blocking layer due to its high triplet energy level that would confine the triplet excitons within the emissive layer.

The low HOMO/LUMO energy level of TAZ is beneficial for blocking holes and facilitating electron injection/transport, thereby enhancing the device performance.

  

Device structure ITO/PEDOT:PSS/α-NPD (20 nm)/TCTA (5 nm)/T2T*:(PPy)2Ir(acac)(9:1 wt%) (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (100 nm) [1]
Colour Green  green
Max. Luminance 85,000 cd/m2
Max. Current Efficiency 54 cd/A
Max. EQE     17.4%
Max. Power Efficiency 48 lm W−1 

 

Device structure ITO/PEDOT:PSS (50 nm)/poly-TCZ (35 nm)/1*:Ir(ppy)3 (94:6 wt%)(20 nm)/TAZ (50 nm)/LiF (2.5 nm)/Al (40 nm)/Ag (100 nm) [2]
Colour Blue  blue
Max. Luminance 47,000 cd/m2
Max. Current Efficiency 81.1 cd/A
Max. EQE 25.2%
Max. Power Efficiency 46.8 lm W−1 

 

Device structure MoO3 (3 nm)/CBP: 20 wt% Ir(ppy)3: 4 wt% FIrpic (30 nm)/TAZ (50 nm) [3]
Colour Green  green
Max. Luminance 27,524 cd/m2
Max. Current Efficiency 71.2 cd/A

 

Device structure ITO/NPB (50nm)/mCP (10 nm)/CbzTAZ:15 wt%FIripic (35 nm)/TAZ (30 nm)/LiF (1 nm)/Al (120 nm) [5]
Colour Blue   blue
Max. EQE >23%
Max. Current Efficiency >45 cd/A
Max. Power Efficiency >40 lm W−1 

 

Device structure

ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [6]
Colour White  white
Max. EQE 20.1%
Max. Power Efficiency 41.3 lm W1

 

Device structure

ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP:6 wt%2CzPN (11 nm)/TAZ:4 wt% PO-01 (4 nm)/TAZ (40 nm)/LiF (0.5 nm)/Al (150 nm) [7]

Colour White  white
Max. EQE 38.4%
Max. Power Efficiency 80.1 lm W1

*For chemical structure information please refer to the cited references

Characterisation (HPLC&NMR)

 

1 H NMR 3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole TAZ
1H NMR of 3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole in CDCl3.

 

HPLC trace of TAZ
HPLC trace of 3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ).

 

Literature and Reviews

  1. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,H-Fan Chen et al., J. Mater. Chem., 19, 8112–8118 (2009). 
  2. Efficient blue-emitting electrophosphorescent organic light-emitting diodes using 2-(3,5-di(carbazol-9-yl)-phenyl)-5-phenyl-1,3,4-oxadiazole as an ambipolar host, Y. Zhang et al., RSC Adv., 3, 23514 (2013). DOI: 10.1039/c3ra43720e.
  3. Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter, Y. Miao et al., RSC Adv., 5, 4261 (2015). DOI: 10.1039/c4ra13308k.
  4. Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission- Mechanism Analysis, Q. Wang et al., Adv. Funct. Mater., 19, 84–95 (2009). DOI: 10.1002/adfm.200800918.
  5. High Efficiency Blue Phosphorescence Organic Light Emitting Device with Novel CbzTAZ host, T-L. Chiu et al., SID DIGEST, 1407-1409 (2013); doi/10.1002/j.2168-0159.2013.tb06506.x.
  6. Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
  7. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material
    with thermally activated delayed fluorescence, D. Zhang et al., J. Mater. Chem. C, 2, 8191-8197 (2014); DOI: 10.1039/c4tc01289e.
  8. High-efficiency and low-voltage p - i - n electrophosphorescent organic light-emitting diodes with double-emission layers, G. He et al., Appl. Phys. Lett., 85, 3911 (2004); doi: 10.1063/1.1812378.
  9. Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material, M-H. Tsai et al., Adv. Mater., 18, 1216–1220 (2006). 10.1002/adma.200502283.