TCTA

Order Code: M472
MSDS sheet

Price

(excluding Taxes)

£79.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99% purity) M471 500 mg
£103
Unsublimed (>98% purity) M472 1 g £79
Sublimed (>99% purity) M471 1 g £163

General Information

CAS number 139092-78-7
Chemical formula C54H36N4
Molecular weight 740.89 g/mol
Absorption λmax 293 and 326 nm (THF)
Fluorescence λem 385 nm (THF)
HOMO/LUMO HOMO = 5.83 eV, LUMO = 2.43 eV [1]
Synonyms TCTA, 4,4',4"-Tris(carbazol-9-yl)triphenylamine, Tris(4-carbazoyl-9-ylphenyl)amine
Classification / Family

Carbazole derivatives, Hole-injection layer materials, Hole-transporting layer materials, Phosphorescent host materials, Electron-blocking layer materials, Light-emitting diodes

 

Product Details

Purity

Sublimed* >99.8%

Unsublimed >99.5%

Melting point 298~300 °C
Colour White powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

tcta chemical stucture
Chemical Structure of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA); CAS No. 139092-78-7; Chemical formula C54H36N4.

 

Applications

Having three carbazole units as the pendants and triarylamine at the core, tris(4-carbazoyl-9-ylphenyl)amine (TCTA) is electron rich and thus is widely used as a hole-transport and hole-injection material in light-emitting diodes and perovskite solar cells. With low electron mobility, TCTA has also been used as exciton/electron blocking layer materials because of its high lying LUMO energy level (LUMO = 2.4 eV).

TCTA is also a very popular phosphorescent host material due to its large band gap (Eg = 3.4 eV) for green, red and white phosphorescent organic light-emitting diodes (PhOLEDs).

 

Device structure ITO/MoO3 (8 nm)/(NPB)(80 nm)/TAPC(5 nm)/TCTA:4 wt% Ir(MDQ)2(acac) (4 nm)/TCTA:2 wt% Ir(ppy)3 (4 nm)/43 wt% TCTA: 43 wt% 26DCzPPy: 14 wt% FIrpic (5 nm)/TmPyPb (40 nm)/LiF/Al [1]
Colour White   white
Max. EQE 19.4%
Max. Current Efficiency 43.6 cd/A
Max. Power Efficiency 45.8 lm W1
Device structure             ITO/PEDOT:PSS/TCTA:TPOB:10 wt % FIrpic/TmPyPB/Cs2CO3/Al [2]
Colour Blue   blue
Max. EQE                       13.8%
Max. Current Efficiency 28.2 cd/A
Max. Power Efficiency 22 lm W1
Device structure    ITO/NPB (40 nm)/TCTA (20 nm)/TPA-C-TPA (30 nm)/TPBi (20 nm)/LiF (1 nm)/Al (200 nm) [3]
Colour Deep Blue   deep blue
EQE@10 mA/ cm2 4.83%
Current Efficiency@10 mA/ cm2 3.18 cd/A
Power Efficiency@10 mA/ cm2 2.03 lm W1
Device structure             ITO/PEDOT:PSS (25 nm)/TCTA:POPH:10 wt% FIrpic (35 nm)/TPBI (35 nm)/Ca (10 nm)/Ag [4]
Colour Blue   blue
Max. Luminance 40,000 cd/m2
Max. Current Efficiency 25.8 cd/A
Max. Power Efficiency 22.5 lm W1
Device structure ITO/PEDOT:PSS(40 nm)/TCTA:TAPC:FIrpic:Ir(ppy)3:Ir(MDQ)2(acac) (40nm)/TmPyPB (50 nm)/LiF (1 nm)/Al [5]
Colour White   white
Max. Current Efficiency 37.1 cd/A
Max. Power Efficiency 32.1 lm W1
Device structure  ITO/MoO3 (3nm)/NPB (20nm)/TCTA (8nm)/TCTA:3P-T2T (1:1): 1.0 wt% DCJTB (15nm)/3P-T2T (45nm)/LiF (1nm)/Al [6]
Colour Red   red
MAX. EQE 10.15%
Max. Luminance 22, 767 cd/m2  
Max. Current Efficiency 22.7 cd/A                  
Max. Current Efficiency 21.5 lm W1
Device structure ITO/PEDOT:PSS/α-NPD (20 nm)/TCTA (5 nm)/T2T*:(PPy)2Ir(acac)(9:1 wt%) (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (100 nm) [7]
Colour Green    green
Max. Luminance 85,000 cd/m2
Max. Current Efficiency 54 cd/A
Max. EQE     17.4%
Max. Power Efficiency 48 lm W−1 

Device structure

ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP:6 wt%2CzPN (11 nm)/TAZ:4 wt% PO-01 (4 nm)/TAZ (40 nm)/LiF (0.5 nm)/Al (150 nm) [8]

Colour White   white
Max. EQE 38.4%
Max. Power Efficiency 80.1 lm W1
Device structure ITO/EHI608/TCTA/TCTA:3TP:Firpic (1:1:0.17)/3TPYMB/Al [9]        
Colour Blue   blue
Max Power Efficiency 27.5 lm W-1
Max. Current Efficiency 36.0 cd/A
Device structure

ITO/MoOx (5 nm)/NPB (40 nm)/4% Y-Pt*:TCTA (20 nm)/8% FIrpic:mCP(10 nm)/8% FIrpic:UGH2 (10 nm)/BAlq (40 nm)/LiF (0.5 nm)/Al (100 nm) [10]

Colour White   white
Max. EQE  16.0%
Max. Current Efficiency 45.6 cd/A
Max. Power Efficiency 35.8 lm W1

*For chemical structure informations please refer to the cited references.

 

Characterisation

hplc oc tcta

HPLC trace of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA).

 

Literature and Reviews

  1. High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers, Q. Zhang et al., Chin. Phys. Lett., 31 (4) 046801 (2014).
  2. Enhanced Electron Affinity and Exciton Confinement in ExciplexType Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage, X. Ban et al., ACS Appl. Mater. Interfaces, 8, 2010-2016 (2016); DOI: 10.1021/acsami.5b10335.
  3. Highly efficient emitters of ultra-deep-blue light made from chrysene chromophores, H. Shin et al., J. Mater. Chem. C, 2016, Advance Article; DOI: 10.1039/C5TC03749B.
  4. High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit, X. Ban et al., ACS Appl. Mater. Interfaces, 7 (45), 25129–25138 (2015); DOI: 10.1021/acsami.5b06424.
  5. Solution-Processed Small Molecules As Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes, Q Fu. et al., ACS Appl. Mater. Interfaces, 4, 6579−6586 (2012); dx.doi.org/10.1021/am301703a.
  6. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host, B. Zhao et al., Scientific Reports | 5:10697 | DOI: 10.1038/srep10697.
  7. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,H-Fan Chen et al., J. Mater. Chem., 19, 8112–8118 (2009). 
  8. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence, D. Zhang et al., J. Mater. Chem. C, 2, 8191-8197 (2014); DOI: 10.1039/c4tc01289e.
  9. Enhance efficiency of blue and white organic light emitting diodes with mixed host emitting layer using TCTA and 3TPYMB, T-C. Liao et al., Curr. Appl. Phys., 13, S152-S155, (2013).
  10. High Efficiency White Organic Light-Emitting Devices Incorporating Yellow Phosphorescent Platinum(II) Complex and Composite Blue Host, S-L. Lai et al., Adv. Funct. Mater., 23, 5168–5176 (2013); DOI: 10.1002/adfm.201300281.