CBP - 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl

Order Code: M392
MSDS sheet


(excluding Taxes)



 Grade Order Code Quantity Price
Unsublimed (>99.6% purity) M392 1 g £48
Sublimed (>99.6% purity) M391 1 g £99
Unsublimed (>99.6% purity) M392 5 g £137
Sublimed (>99.6% purity) M391 5 g £339

General Information

CAS number 58328-31-7
Chemical formula C36H24N2
Molecular weight 484.59 g/mol
  • CBP, 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl
  • 4,4-N,N′-Dicarbazole-1,1′-biphenyl
  • DCBP
Classification / Family

Carbazole derivatives, Hole-injection layer materials, Hole transport layer materials, Hole blocking layer materials, Phosphorescent host materials, Light-emitting fiodes, Organic electronics, Sublimed materials


Product Details


> 99.6% (sublimed)

> 99.6% (unsublimed)

Melting point 281-285 (lit.) °C
Colour White powder

 *Sublimation is a technique used to obtain ultra pure-grade chemicals by removing trace metals and inorganic impurities. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.


Chemical Structure


 CBP chemical structure
Chemical Structure of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP); CAS No. 58328-31-7; Chemical Formula C36H24N2



4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), is one of the most widely-used host materials for efficient phosphorescent organic light-emitting diodes with high hole mobility. This is due to its electron-rich property from two carbazolyl units.

It has been demonstrated that CBP can efficiently host green, yellow and red phosphorescent emitters with triplet energies smaller than that of CBP (ET = 2.6 eV) [1].

Device structure 


LiF/Al [2]

Colour  White  white
Max EQE 11.0 ± 0.3%
Max. Power Efficiency 22.1 ± 0.3lm W1


Device structure ITO /TAPC/(1wt% DPB:99wt%tri-PXZ-TRZ*):CBP (15:85)/LiF/Al [6]
Colour Red  red
Max EQE 17.5%
Max. Power Efficiency 28lm W1


Device structure  ITO/MO3 (1 nm)/CBP (35 nm)/8 wt% Ir(ppy)2(acac):CBP/TPBi (65 nm)/LiF/Al (100 nm) [7]
Colour Green  green
EQE@100  cd/m2 23.4
Current Efficiency@100 


81 cd/A
Powder Efficiency@100 


78.0 lm W1


Device structure ITO/MoO3 (3 nm)/CBP: 20 wt% Ir(ppy)3: 4 wt% FIrpic (30 nm)/TAZ (50 nm) [8]
Color Green  green
Max. Luminance 27,524 cd/m2
Max. Current Efficiency 71.2 cd/A


Device structure ITO/MoOx (2 nm)/m-MTDATA: MoOx (30 nm, 15 wt.%)/m-MTDATA
(10 nm)/Ir(ppz)
(10 nm)/CBP:PO-01* (3 nm, 6 wt.%)/Ir(ppz)3
(1 nm)/DBFDPOPhCz*:FIrpic (10 nm,10 wt.%)/Bphen (36 nm)/LiF
(1 nm)/Al [9]                   
Color White  white
Max. EQE 12.2%
Max. Current Efficiency 42.4 cd/A
Max. Power Efficiency 47.6 lm W1


Device structure ITO/NPB (30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen(35 nm)/LiF (1 nm)/CoPc:C60 (4:1) (5 nm)/
MoO(5 nm)/NPB(30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen (35 nm)/Mg:Ag (100 nm) [10]
Color    Yellow  yellow
Max. EQE 16.78%
Max. Luminance  42,236 cd/m2
Max. Current Efficiency 50.2 cd/A
Max. Power Efficiency 12.9 lm W1


Device structure                ITO/NPD* (40 nm)/9%-Ir(piq)3:CBP (20 nm)/BPhen (50 nm)/KF (1 nm)/Al [11]
Color Red  red
Max. Luminance  11,000 cd/m2
Max EQE  10.3%
Max. Powder Efficiency    8.0 lm W1


Device structure                                            ITO/0.4 wt% F4TCNQ doped α NPD (30 nm)/ 5 wt% Ir (ppy)3 doped CBP (50 nm)/BPhen (30 nm)/20 wt% TCNQ mixed BPhen (1.5 nm)/Al [12]
Color Green  green
Luminance@15 V 1,320 cd/m2 
Power Efficiency@14 V 56.6 lm W1  
Current Efficiency@14 V 23.17 cd/A


Device structure                                       ITO/F4TCNQ (3 nm)/MeO-Spiro-TPD (27 nm)/CBP + BCzVbi* (50 nm)/BPhen (10 nm)/TCNQ mixed BPhen (1.5 nm)/Al [13]
Color                                  Red  red
Luminance@ 10 mA/cm2 1,790 cd/m2
Power Efficiency@ 10 mA/cm2      4.65 lm W1  
Current Efficiency@ 10 mA/cm2 18.0 cd/A

*For chemical structure information, please refer to the cited references


1H NMR 4,4'-bis(n-carbazolyl)-1,1'-biphenyl CBP

1H NMR of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) in CDCl3.

HPLC trace of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP)

HPLC trace of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP).

Literature and Reviews

  1. Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer, M. Baldo et al., Phys Rev B, 62: 10958–10966 (2000).
  2. Management of singlet and triplet excitons for efficient white organic light-emitting devices, Y. Sun, et al, Nature 440, 908-912 (2006), doi:10.1038/nature04645.
  3. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport, T. D. Anthopoulos et al., Appl. Phys. Lett. 82, 4824 (2003).
  4. White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers, P. Chen et al., Appl. Phys. Lett. 91, 023505 (2007).
  5. Highly Efficient and Low-Voltage Phosphorescent Organic Light-Emitting Diodes Using an Iridium Complex as the Host Material, T. Tsuzuki et al., Adv. Mater., 19, 276–280 (2007).
  6. High-efficiency organic light-emitting diodes with fluorescent emitters, H. Nakanotani et al., Nat. Commun., 5, 4016, DOI: 10.1038/ncomms5016.
  7. Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000 cd/m2, Z. B. Wang, Appl. Phys. Lett. 98, 073310 (2011); http://dx.doi.org/10.1063/1.3532844.
  8. Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter, Y. Miao et al., RSC Adv., 5, 4261 (2015). DOI: 10.1039/c4ra13308k.
  9. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014); http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
  10. Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes, Z. Ma et al., Org. Electronics, 30, 136-142 (2016). doi:10.1016/j.orgel.2015.12.020
  11. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, A. Tsuboyama et al., J. Am. Chem. Soc., 125, 12971-12979 (2003). DOI: 10.1021/ja034732d.
  12. Novel organic electron injection layer for efficient and stable organic light emitting diodes, R. Grover et al., J. Luminescence, 146, 53–56 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.09.004.
  13. Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer, R. Grover et al., Phys. Status Solidi RRL 8 (1), 81–85 (2014). DOI: 10.1002/pssr.201308133.