CBP - 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl

Order Code: M392
MSDS sheet

Price

(excluding Taxes)

£48.00


Pricing

 Grade Order Code Quantity Price
Unsublimed (>99.6% purity) M392 1 g £48
Sublimed (>99.6% purity) M391 1 g £99
Unsublimed (>99.6% purity) M392 5 g £137
Sublimed (>99.6% purity) M391 5 g £339

General Information

CAS number 58328-31-7
Chemical formula C36H24N2
Molecular weight 484.59 g/mol
HOMO/LUMO HOMO 6.0 eV, LUMO 2.9 eV
Synonyms
  • CBP, 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl
  • 4,4-N,N′-Dicarbazole-1,1′-biphenyl
  • DCBP
Classification / Family

Carbazole derivatives, Hole-injection layer materials, Hole transport layer materials, Hole blocking layer materials, Phosphorescent host materials, Light-emitting fiodes, Organic electronics, Sublimed materials

 

Product Details

Purity

> 99.6% (sublimed)

> 99.6% (unsublimed)

Melting point 281-285 (lit.) °C
Colour White powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

 

Chemical Structure

 

 CBP chemical structure
 
Chemical Structure of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP); CAS No. 58328-31-7; Chemical Formula C36H24N2

 

Applications

4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), is one of the most widely-used host materials for efficient phosphorescent organic light-emitting diodes with high hole mobility. This is due to its electron-rich property from two carbazolyl units.

It has been demonstrated that CBP can efficiently host green, yellow and red phosphorescent emitters with triplet energies smaller than that of CBP (ET = 2.6 eV) [1].

Device structure 

ITO/NPD/5%BCzVBi:CBP/CBP/4%PQIr*:CBP/5%Ir(ppy)3:CBP/CBP/5%BCzVBi:CBP/

LiF/Al [2]

Colour  White  white
Max EQE 11.0 ± 0.3%
Max. Power Efficiency 22.1 ± 0.3lm W1

 

Device structure ITO /TAPC/(1wt% DPB:99wt%tri-PXZ-TRZ*):CBP (15:85)/LiF/Al [6]
Colour Red  red
Max EQE 17.5%
Max. Power Efficiency 28lm W1

  

Device structure  ITO/MO3 (1 nm)/CBP (35 nm)/8 wt% Ir(ppy)2(acac):CBP/TPBi (65 nm)/LiF/Al (100 nm) [7]
Colour Green  green
EQE@100  cd/m2 23.4
Current Efficiency@100 

cd/m2

81 cd/A
Powder Efficiency@100 

cd/m2

78.0 lm W1

 

Device structure ITO/MoO3 (3 nm)/CBP: 20 wt% Ir(ppy)3: 4 wt% FIrpic (30 nm)/TAZ (50 nm) [8]
Color Green  green
Max. Luminance 27,524 cd/m2
Max. Current Efficiency 71.2 cd/A

 

Device structure ITO/MoOx (2 nm)/m-MTDATA: MoOx (30 nm, 15 wt.%)/m-MTDATA
(10 nm)/Ir(ppz)
(10 nm)/CBP:PO-01* (3 nm, 6 wt.%)/Ir(ppz)3
(1 nm)/DBFDPOPhCz*:FIrpic (10 nm,10 wt.%)/Bphen (36 nm)/LiF
(1 nm)/Al [9]                   
Color White  white
Max. EQE 12.2%
Max. Current Efficiency 42.4 cd/A
Max. Power Efficiency 47.6 lm W1

 

Device structure ITO/NPB (30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen(35 nm)/LiF (1 nm)/CoPc:C60 (4:1) (5 nm)/
MoO(5 nm)/NPB(30 nm)/CBP:8 wt% (t-bt)2Ir(acac)* (15 nm)/
BPhen (35 nm)/Mg:Ag (100 nm) [10]
Color    Yellow  yellow
Max. EQE 16.78%
Max. Luminance  42,236 cd/m2
Max. Current Efficiency 50.2 cd/A
Max. Power Efficiency 12.9 lm W1

 

Device structure                ITO/NPD* (40 nm)/9%-Ir(piq)3:CBP (20 nm)/BPhen (50 nm)/KF (1 nm)/Al [11]
Color Red  red
Max. Luminance  11,000 cd/m2
Max EQE  10.3%
Max. Powder Efficiency    8.0 lm W1

 

Device structure                                            ITO/0.4 wt% F4TCNQ doped α NPD (30 nm)/ 5 wt% Ir (ppy)3 doped CBP (50 nm)/BPhen (30 nm)/20 wt% TCNQ mixed BPhen (1.5 nm)/Al [12]
Color Green  green
Luminance@15 V 1,320 cd/m2 
Power Efficiency@14 V 56.6 lm W1  
Current Efficiency@14 V 23.17 cd/A

 

Device structure                                       ITO/F4TCNQ (3 nm)/MeO-Spiro-TPD (27 nm)/CBP + BCzVbi* (50 nm)/BPhen (10 nm)/TCNQ mixed BPhen (1.5 nm)/Al [13]
Color                                  Red  red
Luminance@ 10 mA/cm2 1,790 cd/m2
Power Efficiency@ 10 mA/cm2      4.65 lm W1  
Current Efficiency@ 10 mA/cm2 18.0 cd/A

*For chemical structure information, please refer to the cited references

Characterisations

1H NMR 4,4'-bis(n-carbazolyl)-1,1'-biphenyl CBP

1H NMR of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP) in CDCl3.

HPLC trace of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP)

HPLC trace of 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP).

Literature and Reviews

  1. Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer, M. Baldo et al., Phys Rev B, 62: 10958–10966 (2000).
  2. Management of singlet and triplet excitons for efficient white organic light-emitting devices, Y. Sun, et al, Nature 440, 908-912 (2006), doi:10.1038/nature04645.
  3. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport, T. D. Anthopoulos et al., Appl. Phys. Lett. 82, 4824 (2003).
  4. White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers, P. Chen et al., Appl. Phys. Lett. 91, 023505 (2007).
  5. Highly Efficient and Low-Voltage Phosphorescent Organic Light-Emitting Diodes Using an Iridium Complex as the Host Material, T. Tsuzuki et al., Adv. Mater., 19, 276–280 (2007).
  6. High-efficiency organic light-emitting diodes with fluorescent emitters, H. Nakanotani et al., Nat. Commun., 5, 4016, DOI: 10.1038/ncomms5016.
  7. Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000 cd/m2, Z. B. Wang, Appl. Phys. Lett. 98, 073310 (2011); http://dx.doi.org/10.1063/1.3532844.
  8. Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter, Y. Miao et al., RSC Adv., 5, 4261 (2015). DOI: 10.1039/c4ra13308k.
  9. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014); http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
  10. Effect of bulk and planar heterojunctions based charge generation layers on the performance of tandem organic light-emitting diodes, Z. Ma et al., Org. Electronics, 30, 136-142 (2016). doi:10.1016/j.orgel.2015.12.020
  11. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, A. Tsuboyama et al., J. Am. Chem. Soc., 125, 12971-12979 (2003). DOI: 10.1021/ja034732d.
  12. Novel organic electron injection layer for efficient and stable organic light emitting diodes, R. Grover et al., J. Luminescence, 146, 53–56 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.09.004.
  13. Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer, R. Grover et al., Phys. Status Solidi RRL 8 (1), 81–85 (2014). DOI: 10.1002/pssr.201308133.