TPBi

Order Code: M652
MSDS sheet

Price

(excluding Taxes)

£117.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.8% purity) M651 250 mg £128
Unsublimed (>99.8% purity) M652 500 mg £117
Sublimed (>99.8% purity) M651 500 mg £186
Unsublimed (>99.8% purity) M652 1 g £179
Sublimed (>99.8% purity) M651 1 g £295

General Information

CAS number 192198-85-9
Chemical formula C45H30N6
Molecular weight 408.49 g/mol
Absorption λmax 305 nm in THF
Fluorescence λem 370 nm in THF
HOMO/LUMO HOMO 6.2/6.7 eV, LUMO 2.7 eV [1, 2]
Synonyms 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)
Classification / Family

Benzimidazole derivatives, Electron transport layer materials (ETL), Electron injection layer materials (EIL), Hole blocking layer materials (HBL), Fluorescent and phosphorescent host materials.

Light-Emitting Diodes, Organic electronics

 

Product Details

Purity

Sublimed* >99.8%

Unsublimed* >99.8%
Melting point  272 - 277 °C (lit.)
Colour White Powder

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemcial structure of TPBi
Chemical Structure of 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBi; CAS No. 192198-85-9; Chemical Formula C45H30N6

Applications

2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBi, being electron deficient, is normally used as electron transport layer material in optoelectronic devices. Having a low LUMO energy level (2.7 eV), TPBi is also used as host material for both fluorescent and phosphorescent light emitting systems.

In some cases, TPBI is used to replace CBP (HBL)/Alq(ETL) to simplify the device structure for its excellent electron transporting and also its hole blocking abilities with very deep HOMO energy level (HOMO = 6.2/6.7 eV). It has also been reported that TPBi could be used as electron injection layer material between Alq3 (ETL) and Cs2O3/Al (electrode). It suggested that TPBI thin layer at the Alq3/Cs2O3 interface facilitates the electron injection and is also involved with hole-blocking and exciton confinement [3].

  

Device structure         ITO/MoO3(1 nm)/mCP (60 nm)/mCP:TPBi:Ir(tfmppy)2(tpip)* (20 nm, 1:1, 6 wt%)/TPBi (15 nm)/TPPhen:W2(hpp)4* (45 nm, 12 wt%)/Al (100 nm) [2]
Colour Green   green
Max. EQE 20.8%
Max. Current Efficiency 72.9 cd/A
Max. Power Efficiency 66.3 lm W1  

 

Device structure ITO/PEDOT:PSS/PFO:MEH-PPV (1.0 wt%)/TPBi/LiF/Al [4]                              
Colour White  white
Max. Luminance 7,560  cd/m2
Max. Current Efficiency 7.8 cd/A

 

Device structure        ITO/α-NPD (30 nm)/TCTA (20 nm)/CzSi* (10 nm)/10 wt% DMOC-DPS:DPEPO* (20 nm)/DPEPO (10 nm)/TPBI (30 nm)/LiF (0.5 nm)/Al [5]
Colour Blue   blue
Max. Luminance 2,544  cd/m2
Max. EQE       ≥ 14.5%

 

Device structure ITO/NPB/rubrene in p-DMDPVBi:NPB/TPBi/LiF/Al [6]
Colour White  white
Max. Luminance 18,100  cd/m2
Max. Current Efficiency 10.6 cd/A

 

Device structure        ITO/PEDOT:PSS/P2*/TPBi/LiF/Al [7]
Colour Deep Blue  deep blue
Max. Luminance 274  cd/m2
Max. EQE       3.9%
Max. Current Efficiency 1.3 cd/A
Max. Power Efficiency 0.99 lm W

 

Device structure         ITO/NPB (30 nm)/CBP:Ir(ppy)3 (20 nm)/TPBi:Ir(ppy)3 (10 nm)/TPBi (10 nm)/TPBi:LiF (40 nm)/LiF (1.2 nm)/Al(150 nm) [10]
Colour Green   green
Max. Luminance 66,820 cd/m2
Max. Current Efficiency 40.5 cd/A
Max. Power Efficiency 23.7 lm W1  

 

Device structure     Al/MoO3 (3 nm)/mCP (50 nm)/Ir(tfmppy)2(tpip)* (0.5 nm)/TPBi (2.5 nm)/mCP (2.5 nm)/Ir(tfmppy)2(tpip) (0.5 nm)/TPBi (10 nm)/Bphen (45 nm)/Liq (1 nm)/Al (1 nm)/Ag (22 nm)/mCP (80 nm) [11]
Colour Green  green
Max. Current Efficiency 126.3 cd/A

 

Device structure  ITO/m-MTDATA (30 nm)/NPB (20 nm)/TPBI:4 wt% Ir(ppy)3:2 wt%Ir(piq)2(acac) (30 nm)/ Alq(20 nm)/LiF/Al [12]
Colour White  white
Max. Luminance 33,012 cd/m2
Current Efficiency@100  cd/m2 15.3 cd/A
Max. Powder Efficiency 10.7 lm W1

*For chemical structure informations please refer to the cited references

Characterisation (HPLC)

hplc trace of tpbi

HPLC trace of 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole), TPBi

Literature and Reviews

  1. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport, T. D. Anthopoulos et al., Appl. Phys. Lett., 82, 4824 (2003); doi: 10.1063/1.1586999.
  2. High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness, J. Wang et al., Org. Electronics, 14, 2854–2858 (2013). http://dx.doi.org/10.1016/j.orgel.2013.08.006.
  3. Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs, J. Lian et al., Chin. Phys. Lett., 28, 047803 (2011). http://iopscience.iop.org/0256-307X/28/4/047803.
  4. Improving light efficiency of white polymer light emitting diodes by introducing the TPBi exciton protection layer, S. B. Shin et al., Thin Solid Films 517, 4143–4146 (2009). doi:10.1016/j.tsf.2009.02.027.
  5. High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter, S. Wu et al., J. Mater. Chem. C, 2, 421 (2014). DOI: 10.1039/c3tc31936a.
  6. Co-Host Comprising Hole-Transporting and Blue-Emitting Components for Efficient Fluorescent White OLEDs, Y-C. Chen et al., J. Electrochem. Soc., 159 (4) J127-J131 (2012); doi: 10.1149/2.092204jes.
  7. Fluorene co-polymers with high efficiency deep blue electroluminescence, J. Santos et al., J. Mater. Chem. C, 3, 2479 (2015); DOI: 10.1039/c4tc02766c.
  8. High efficiency and low efficiency roll off in white phosphorescent organic lightemitting diodes by managing host structures, K. S. Yook et al., Appl. Phys. Lett., 92, 193308 (2008); doi: 10.1063/1.2929742.
  9. High efficiency green phosphorescent organic light emitting device with (TCTA/TCTA0.5TPBi0.5/TPBi): Ir(ppy)3 emission layer, J. G. Jang et al., Thin Solid Films 517, 4122–4126 (2009). doi:10.1016/j.tsf.2009.02.015.
  10. Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime, Q. Yang et al., Syn. Metals 162, 398– 401 (2012). doi:10.1016/j.synthmet.2011.12.027.
  11. High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer, X. Shi et al., Org. Electronics, 15, 2408–2413 (2014). http://dx.doi.org/10.1016/j.orgel.2014.07.001.
  12. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer, W. Xie et al., Semicond. Sci. Technol. 20, 326–329 (2005); doi:10.1088/0268-1242/20/3/013.