CzSi


Order Code: M2104A1
Not in stock

Pricing

 Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2104A1 100 mg £195.00
Sublimed (>99.0% purity) M2104A1 250 mg £389.00
Sublimed (>99.0% purity) M2104A1 500 mg £631.00
Sublimed (>99.0% purity) M2104A1 1 g £1020.00

General Information

CAS number 898546-82-2
Full name 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole
Chemical formula C58H49NSi2
Molecular weight 816.19 g/mol
Absorption λmax 275 nm in CH2Cl2
Fluorescene λem 354 nm in CH2Cl2
HOMO/LUMO HOMO = 6.0 eV, LUMO = 2.5 eV; T1=3.02 eV [1]
Classification / Family Carbazole, TADF blue emitter host materials, Hole-transport layer materials, Phosphorescent organic light-emitting devices (PHOLEDs), Sublimed materials

Product Details

Purity Sublimed >99.0% (HPLC)
Melting point TGA: >320 °C (0.5% weight loss)
Appearance Off-white powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

chemical structure of czsi
Chemical Structure of 9-(4-tert-Butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi).

 

Applications

CzSi is known for its high triplet energy, wide band-gap, and high glass-transition temperature (Tg >131 °C). It is one of the most widely-used TADF host materials for blue electrophosphorescence.

It possesses bulky, sterically-hindered triphenylsilyl substitutions on electrochemically-active C3 and C6 positions of carbazole. With a nearly-perfect 90°C dihedral angle between its carbazole and tert-butylphenyl groups, CzSi exhibits enhanced morphological and superior electrochemical stability.

 

Device structure ITO/PEDOT:PSS (30 nm)/DPAS (17.5 nm)/TCTA (2.5 nm)/CzSi doped with 8 wt% FIrpic (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (150 nm) [2]
Colour Blue blue
Max. Current Efficiency 30.6 cd/A
Max. EQE 15.7%
Max. Power Efficiency 26.7 Im/W
Device structure ITO/TAPC (30 nm)/TCTA (10 nm)/CzSi (3 nm)/CzSi doped with 4 wt% of 2c* (25 nm)/UGH2 doped with 4 wt% of 2c*(3 nm)/UGH2 (2 nm)/TmPyPB (50 nm)/LiF (0.8 nm)/Al (150 nm) [3]
Colour Blue blue
Max. Current Efficiency 22.3 cd/A
Max. EQE 11%
Max. Power Efficiency 16.7 Im/W
Device structure  (ITO)/a-NPD (30 nm)/TCTA (20 nm)/CzSi (3 nm)/CzSi doped with 6 wt% 2* (35 nm)/UGH2 doped with 6* wt%Ir(fppz)2(dfbdp) (3 nm)/UGH2 (2 nm)/BCP (50 nm)/Cs2CO(2 nm)/Ag (150 nm) [4]
Colour Blue blue
Max. Current Efficiency 11.4 cd/A
Max. EQE 11.9%
Max. Power Efficiency 7.9 Im/W
Device structure ITO/NPB (30 nm)/TCTA (20 nm)/FIrpic:CzSi (7%, 20 nm)/(DMBA)2Ir(acac):CBP (5%, 200 nm)/TAZ (50 nm)/ LiF (1 nm)/Al (100 nm) [5]
Colour White white
Max. Current Efficiency 25.6 cd/A
Max. EQE 12.7%
Max. Power Efficiency 20.2 Im/W

*For chemical structure information, please refer to the cited references.

 

Literature and Reviews

  1. FIrpic: archetypal blue phosphorescent emitter for electroluminescence, E. Baranof et al., Dalton Trans., 44, 8318 (2015); DOI: 10.1039/c4dt02991g.
  2. Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material, M-H. Tsai et al., Adv. Mater., 18, 1216–1220 (2006); DOI: 10.1002/adma.200502283.
  3. Iridium(III) Complexes of a Dicyclometalated Phosphite Tripod Ligand: Strategy to Achieve Blue Phosphorescence Without Fluorine Substituents and Fabrication of OLEDs, C-H. Lin et al., Angew. Chem., 123, 3240 –3244 (2011); DOI: 10.1002/ange.201005624 .
  4. En Route to High External Quantum Efficiency (~12%), Organic True-Blue-Light-Emitting Diodes Employing Novel Design of Iridium (III) Phosphors, Y-C. Chiu et al., Adv. Mater., 21, 2221–2225 (2009); DOI: 10.1002/adma.200802546.
  5. Highly efficient white organic light-emitting diodes based on broad excimer emission of iridium complex, G. Zhang et al., Org. Electronics 11, 1165–1171 (2010); doi:10.1016/j.orgel.2010.04.016.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.