8-Quinolinolato lithium (Liq)

Order Code: M731
MSDS sheet


(excluding Taxes)



 Grade Order Code Quantity Price
Sublimed (>99% purity) M731 1 g £98
Unsublimed (>98% purity) M732 5 g £111
Sublimed (>99% purity) M731 5 g £366

General Information

CAS number 25387-93-3
Chemical formula C9H6LiNO
Molecular weight 151.09 g/mol
Absorption λmax  261 nm (in THF)
Fluorescence λem 331 nm (in THF)
HOMO/LUMO HOMO = 5.58 eV, LUMO = 3.15 eV [1]
Synonyms Liq
Lithium 8-quinolinolate
8-Hydroxyquinolinolato lithium
Classification / Family Electron transport-layer (ETL) materials, Organic Light-Emitting Diodes, Organic electronics, Sublimed materials

Product Details


>99% (sublimed)

>98% (unsublimed)
Melting point 366-368 ºC (lit.)
TGA Td ≥ 430 oC (5%)
DSC Onset: 365 ± 1 oC
Colour Light yellow powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.


chemical structure of 8-Hydroxyquinolinolato-lithium (liq)
Chemical Structure of 8-Hydroxyquinolinolato-lithium (Liq); CAS No. 25387-93-3; Chemical Formula C9H6LiNO.



8-Hydroxyquinolinolato-lithium (Liq), coupled with aluminium (Al), is commonly used as an electron injection layer (EIL) material in organic electronic devices, particularly OLEDs. Normally, only a very thin layer (1-2 nm) Liq is needed for efficient electron injection from the electrode to the electron transport layer (ETL).

Liq/Al has also been widely known to be an effective cathode system towards general electron transport layer materials. It has also been reported that ultrathin Liq interlayers can greatly enhance the operational stability of light-emitting diodes [2].

Device structure ITO (150 nm)/NPB (70 nm)/mCP:Firpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% (30 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [3]
Colour White  white
Max. Luminance 37,810 cd/m2 
Max. Current Efficiency 48.1 cd/A
Device structure ITO (180 nm)/TAPC (60 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [4]
Colour Blue  blue
Luminance@200 cd/m2 32,570 cd/m2
Max. Current Efficiency 43.76 cd/A
Max. EQE 23.4%
Max. Power Efficiency 21.4 lm W−1 
Device structure     Al/MoO3 (3 nm)/mCP (50 nm)/Ir(tfmppy)2(tpip)* (0.5 nm)/TPBi (2.5 nm)/mCP (2.5 nm)/Ir(tfmppy)2(tpip) (0.5 nm)/TPBi (10 nm)/Bphen (45 nm)/Liq (1 nm)/Al (1 nm)/Ag (22 nm)/mCP (80 nm) [5]
Colour Green  green
Max. Current Efficiency 126.3 cd/A
Device structure  ITO/ NPB (70 nm)/DPVBi:BCzVBi (15 wt%, 15 nm)/ADN:BCzVBi (15% wt%, 15 nm)/BPhen (30 nm)/ Liq (2 nm)/Al (100 nm) [6]
Colour Deep Blue deep blue
Max. Luminance       8,668 cd/m2
Max. Current Efficiency  5.16 cd/A
Device structure ITO/NPB/DPVBi:BCzVBi-6%/MADN:DCM2-0.5%/Bphen/Liq/Al [7]
Colour White white
Max. Luminance  15,400 cd/m2
Max. Current Efficiency 6.19 cd/A
Device structure  ITO/PEDOT:PSS (40 nm)/ CzDMAC-DPS* (40 nm)/TPBI (40 nm)/Liq (1.6 nm)/Al (100 nm) [8]
Colour Greenish-blue greenish-blue
Max. Current Efficiency       30.6 cd/A
Max. Power Efficiency 12.2 lm W−1
Device structure    

ITO/HTL (100 nm)/CBP:9 wt%DACT-II*(40 nm)/BAlq (30 nm)/Liq/Al [9]

Colour Green  green
Max. EQE 41.3%

*For chemical structure information, please refer to the cited references.



DSC/TGA of liq

TGA and DSC trace of 8-Hydroxyquinolinolato-lithium (Liq).


Literature and Review

  1. Lithium-Quinolate Complexes as Emitter and Interface Materials in Organic Light-Emitting Diodes,  C. Schmitz et al., Chem. Mater., 12, 3012-3019 (2000).
  2. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers, DPK. Tsang et al., Sci Rep. 2016; 6: 22463; doi:10.1038/srep22463.
  3. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer, J-K. Kim et al., Sci. Reports, 4, 7009 (2014); DOI: 10.1038/srep07009.
  4. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
  5. High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer, X. Shi et al., Org. Electronics, 15, 2408–2413 (2014). http://dx.doi.org/10.1016/j.orgel.2014.07.001.
  6. Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi:10.1117/1.JPE.3.033598.
  7. High efficient white organic light-emitting diodes using BCzVBi as blue fluorescent dopant,
    Y. Kim et al., J Nanosci. Nanotechnol., 8(9), 4579-83 (2008).
  8. Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters, J. Luo et al., J. Mater. Chem. C, 2016, DOI: 10.1039/C6TC00418K.
  9. Purely organic electroluminescent material realizing 100% conversion from electricity to light,
    H. Kaji et al., Nat. Commun., 6:8476 (2015); DOI: 10.1038/ncomms9476.

Return to the top