mCP - 1,3-Bis(N-carbazolyl)benzene

Order Code: M371
MSDS sheet

Price

(excluding Taxes)

£89.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.7% purity) M371 1 g £89
Sublimed (>99.7% purity) M371 5 g £293
Unsublimed (>99.5% purity) M372 5 g £149


General Information

CAS number 550378-78-4
Chemical formula C30H20N2
Molecular weight 408.49 g/mol
Absorption λmax 292, 338 nm (in THF)
Fluorescence λem 345, 360 nm (in THF)
HOMO/LUMO HOMO = 5.9 eV, LUMO = 2.4 eV
Synonyms

mCP, 1,3-Di(9H-carbazol-9-yl)benzene, 
N,N′-Dicarbazolyl-3,5-benzene

Classification / Family

Carbazole derivatives, Hole transporting materials, Phosphorescent host materials, OLEDs, Organic electronics

 

Product Details

Purity

>99.7% (sublimed

>99.5% (unsublimed)

Melting point 173-178 °C (lit.)
Colour White powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

chemical structure of mCP
Chemical structure of 1,3-Bis(N-carbazolyl)benzene (mCP); CAS No. 550378-78-4; Chemical Formula C30H20N2.

 

Applications

1,3-Bis(N-carbazolyl)benzene, known as mCP, with a high triplet energy (ET  = 2.91 eV) and a very deep highest occupied molecular orbital (HOMO) level, is often used as host materials for efficient blue phosphorescent light-emitting diodes. Kawamura et al. demonstrated that the photoluminescence internal quantum yield of the blue emitter of FIrpic could approach nearly 100% when doped into the wide energy gap host of mCP [1]. 

 

Device structure                      ITO(50 nm)/PEDOT:PSS(60 nm)/TAPC(20 nm)/mCP(10 nm)/CbBPCb*(25 nm)/Al(20 nm) [2]
Colour Blue blue
Max. EQE                       ≥ 30%

Device structure ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [3]                      
Colour White white
Max. EQE 17.5%
Max. Power Efficiency 45 lm W1

Device structure                                            ITO(50 nm)/PEDOT:PSS(60 nm)/TAPC(20 nm)/mCP(10 nm)/mCP:BmPyPb*:4CzIPN(25 nm)/TSPO1(35 nm)/LiF(1 nm)/Al(200 nm)   [4]
Colour Green green
Max. EQE 28.6%
Max. Power Efficiency 56.6 lm W1  

Device structure ITO/DNTPD* (60 nm)/NPB (20 nm)/mCP (10 nm)/mCP:FIrpic (25 nm)/CBP:Ir(piq)2acac (5 nm)/BCP (5 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) [5]                    
Colour White white
EQE@500 cd/m2 8.2 %
Current Efficiency@500 

cd/m2

12.7 lm W1

Device structure

ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [6]
Colour White white
Max. EQE 20.1%
Max. Power Efficiency 41.3 lm W1

Device structure ITO/PEDOT:PSS(40 nm)/mCP:PVK:OXD-7(33:33:22 wt%):
(dfpmpy)2Ir(pic-N-O):(F4PPQ)2Ir(pic-N-O):
(EO2- Cz-PhQ)2Ir(acac)*(12:0.25:0.15 wt%)
(50-60 nm)/TmPyPB(20 nm)/LiF(1 nm)/Al(150 nm) [7]  
Color   White white
Max. EQE        11.45%                                                                                                   
Max. Current Efficiency 23.04 cd/A                                                     
Max. Power Efficiency 8.04 lm W1

*For chemical structure information, please refer to the cited references

 

Characterisation

hplc trace of mcp
HPLC trace of 1,3-Bis(N-carbazolyl)benzene (mCP).

 

Literature and Reviews

  1. 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films, Y. Kawamura et al., Appl. Phys. Lett. 86, 071104 (2005); http://dx.doi.org/10.1063/1.1862777.
  2. Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido[2,3- b]indole Derivatives as Host Materials, C. Lee et al., Adv. Mater., 25, 5450–5454 (2013).
  3. Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
  4. Engineering of Mixed Host for High External Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescence Device, B. Kim et al., Adv. Funct. Mater., 24, 3970–3977 (2014).
  5. Improved color stability in white phosphorescent organic light-emitting diodes using charge confining structure without interlayer, S-H. Kim et al., Appl. Phys. Lett. 91, 123509 (2007); http://dx.doi.org/10.1063/1.2786853.
  6. Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
  7. Single emissive layer white phosphorescent organic light-emitting diodes based on solution-processed iridium complexes, W. Cho et al., Dyes and Pigments, 108, 115-120 (2014), doi:10.1016/j.dyepig.2014.04.033.
  8. Wide-Energy-Gap Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes, S. Ye et al., Chem. Mater., 21 (7), 1333–1342 (2014).
  9. High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer, S. Kim et al., Appl. Phys. Lett., 90, 223505 (2007); http://dx.doi.org/10.1063/1.2742788.
  10. Deep blue phosphorescent organic light-emitting diodes with excellent external quantum efficiency, J. Park et al., Org. Electronics, 14 (12), 3228-3233 (2013), doi:10.1016/j.orgel.2013.09.017.