mCP - 1,3-Bis(N-carbazolyl)benzene

Order Code: M371
MSDS sheet

Price

(excluding Taxes)

£89.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.7% purity) M371 1 g £89
Sublimed (>99.7% purity) M371 5 g £293
Unsublimed (>99.5% purity) M372 5 g £149


General Information

CAS number 550378-78-4
Chemical formula C30H20N2
Molecular weight 408.49 g/mol
Absorption λmax 292, 338 nm (in THF)
Fluorescence λem 345, 360 nm (in THF)
HOMO/LUMO HOMO = 5.9 eV, LUMO = 2.4 eV
Synonyms

mCP, 1,3-Di(9H-carbazol-9-yl)benzene, 
N,N′-Dicarbazolyl-3,5-benzene

Classification / Family

Carbazole derivatives, Hole transporting materials, Phosphorescent host materials, OLEDs, Organic electronics

 

Product Details

Purity

Sublimed* >99.7%

Unsublimed >99.5%

Melting point 173-178 °C (lit.)
Colour White powder

 *Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages, from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemical structure of mCP
Chemical structure of 1,3-Bis(N-carbazolyl)benzene (mCP); CAS No. 550378-78-4; Chemical Formula C30H20N2.

 

Applications

1,3-Bis(N-carbazolyl)benzene, known as mCP, with a high triplet energy (ET  = 2.91 eV) and a very deep highest occupied molecular orbital (HOMO) level, is often used as host materials for efficient blue phosphorescent light-emitting diodes. Kawamura et al. demonstrated that the photoluminescence internal quantum yield of the blue emitter of FIrpic could approach nearly 100% when doped into the wide energy gap host of mCP [1]. 

 

Device structure                      ITO(50 nm)/PEDOT:PSS(60 nm)/TAPC(20 nm)/mCP(10 nm)/CbBPCb*(25 nm)/Al(20 nm) [2]
Colour Blue blue
Max. EQE                       ≥ 30%

Device structure ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [3]                      
Colour White white
Max. EQE 17.5%
Max. Power Efficiency 45 lm W1

Device structure                                            ITO(50 nm)/PEDOT:PSS(60 nm)/TAPC(20 nm)/mCP(10 nm)/mCP:BmPyPb*:4CzIPN(25 nm)/TSPO1(35 nm)/LiF(1 nm)/Al(200 nm)   [4]
Colour Green green
Max. EQE 28.6%
Max. Power Efficiency 56.6 lm W1  

Device structure ITO/DNTPD* (60 nm)/NPB (20 nm)/mCP (10 nm)/mCP:FIrpic (25 nm)/CBP:Ir(piq)2acac (5 nm)/BCP (5 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) [5]                    
Colour White white
EQE@500 cd/m2 8.2 %
Current Efficiency@500 

cd/m2

12.7 lm W1

Device structure

ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [6]
Colour White white
Max. EQE 20.1%
Max. Power Efficiency 41.3 lm W1

Device structure ITO/PEDOT:PSS(40 nm)/mCP:PVK:OXD-7(33:33:22 wt%):
(dfpmpy)2Ir(pic-N-O):(F4PPQ)2Ir(pic-N-O):
(EO2- Cz-PhQ)2Ir(acac)*(12:0.25:0.15 wt%)
(50-60 nm)/TmPyPB(20 nm)/LiF(1 nm)/Al(150 nm) [7]  
Color   White white
Max. EQE        11.45%                                                                                                   
Max. Current Efficiency 23.04 cd/A                                                     
Max. Power Efficiency 8.04 lm W1

*For chemical structure informations please refer to the cited references

 

Characterisation

hplc trace of mcp
HPLC trace of 1,3-Bis(N-carbazolyl)benzene (mCP).

 

Literature and Reviews

  1. 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films, Y. Kawamura et al., Appl. Phys. Lett. 86, 071104 (2005); http://dx.doi.org/10.1063/1.1862777.
  2. Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido[2,3- b]indole Derivatives as Host Materials, C. Lee et al., Adv. Mater., 25, 5450–5454 (2013).
  3. Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
  4. Engineering of Mixed Host for High External Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescence Device, B. Kim et al., Adv. Funct. Mater., 24, 3970–3977 (2014).
  5. Improved color stability in white phosphorescent organic light-emitting diodes using charge confining structure without interlayer, S-H. Kim et al., Appl. Phys. Lett. 91, 123509 (2007); http://dx.doi.org/10.1063/1.2786853.
  6. Manipulating Charges and Excitons within aSingle-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-off for High-PerformanceOWLEDs, Q. Wang et al., Adv. Mater., 21, 2397–2401 (2009).
  7. Single emissive layer white phosphorescent organic light-emitting diodes based on solution-processed iridium complexes, W. Cho et al., Dyes and Pigments, 108, 115-120 (2014), doi:10.1016/j.dyepig.2014.04.033.
  8. Wide-Energy-Gap Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes, S. Ye et al., Chem. Mater., 21 (7), 1333–1342 (2014).
  9. High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer, S. Kim et al., Appl. Phys. Lett., 90, 223505 (2007); http://dx.doi.org/10.1063/1.2742788.
  10. Deep blue phosphorescent organic light-emitting diodes with excellent external quantum efficiency, J. Park et al., Org. Electronics, 14 (12), 3228-3233 (2013), doi:10.1016/j.orgel.2013.09.017.