m-MTDATA


Order Code: M621
Not in stock

Pricing

 Grade Order Code Quantity Price
Sublimed (>98.0% purity) M621 250 mg £118.00
Sublimed (>98.0% purity) M621 500 mg £189.00
Sublimed (>98.0% purity) M621 1 g £329.00

General Information

CAS number 124729-98-2
Chemical formula C57H48N4
Molecular weight 789.02 g/mol
Absorption λmax 312 nm, 342 nm in THF
Fluorescence λem 425 nm in THF
HOMO/LUMO HOMO 5.1 eV, LUMO 2.0 eV [1]
Synonyms
  • 4,4',4''-Tris[(3-methylphenyl)phenylamino]triphenylamine
Classification / Family

Triphenylamine derivatives, Hole-injection materials, Hole transporting materials, Light-emitting diodes, Organic electronics

Product Details

Purity 98.7% (sublimed)
Melting point 210 °C
Appearance Yellow/white powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

 

chemical structure of m-MTDATA
Chemical Structure of 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA); CAS No. 124729-98-2; Chemical Formula C57H48N4

 

Applications

With its very low solid-state ionisation potential and good-quality amorphous film, 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine, m-MTDATA acts as an effective material for the hole-injection buffer layer (HIL) that facilitates hole injection from the ITO electrode to the hole transporting layer (HTL). This potentially lowers the driving voltage of the OLED devices. F4-TCNQ, a strong electron acceptor, is always used together with m-MTDATA as a p-doping material to improve the conductivity of the HTL buffering layer. Typical structure of the device (or part of the device) is ITO/p-doped m-MTDATA/HTL/etc.

 

Device structure ITO/MoOx (2 nm)/m-MTDATA: MoOx (30 nm, 15 wt.%)/m-MTDATA
(10 nm)/Ir(ppz)
(10 nm)/CBP:PO-01* (3 nm, 6 wt.%)/Ir(ppz)3
(1 nm)/DBFDPOPhCz*:FIrpic (10 nm,10 wt.%)/Bphen (36 nm)/LiF
(1 nm)/Al [3]
Colour White  white
Max. EQE 12.2%
Max. Current Efficiency 42.4 cd/A
Max. Power Efficiency 47.6 lm W1
Device structure ITO/[F4-TCNQ(x nm)/m-MTDATA(y nm)]n/NPB/Alq3/Bphen/Cs2CO3/Al [4]
Colour Green  green
Max. Luminance 23,500 cd/m2
Max. Current Efficiency 7.0 cd/A
Max. Power Efficiency 4.46 lm W1  
Device structure ITO/PEDOT:PSS(40nm)/m-MTDATA:Ir(Flpy-CF3)(40nm)/TmPyPB(55nm)/LiF(0.5nm)/Al(100nm) [5]
Colour Yellow  yellow
Max. EQE 25.2%
Max. Luminance  43,085 cd/m2
Max. Current Efficiency 74.3 cd/A
Max. Power Efficiency 97.2 lm W1
Device structure                                       ITO/PEDOT:PSS/m-MTDATA (20 nm)/m-MTDATA:3TPYMB (60 nm)/3TPYMB (10 nm)/LiF (0.8 nm)/ Al (100 nm) [6]
Colour Red  red
Max. Luminance 17,100cd/m2
Max. Current Efficiency  36.79 cd/A
Device structure  ITO (80 nm)/m-MTDATA (20 nm)/NPB (20 nm)/[ADN:Alq3 (4:1)]:1wt.% DCJTB:0.2wt.%C545T/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [7]
Colour Red  red
Max. Luminance 11,600 cd/m2    
Max. Current Efficiency 3.6 cd/A 
Device structure ITO/m-MTDATA*:F4-TCNQ (100 nm)/TPD (5 nm)/Alq3 (20 nm) /BPhen (10 nm)/ Bphen:Li (30 nm)/LiF (1 nm)/Al (100 nm) [8] 
Colour Green  green
Max. Luminance 10,000 cd/m2 at 5.2 V
Max. Current Efficiency 5.27 cd/A
Device structure  ITO/m-MTDATA (30 nm)/NPB (20 nm)/TPBI:4 wt% Ir(ppy)3:2 wt%Ir(piq)2(acac) (30 nm)/Alq3(20 nm)/LiF/Al [9]
Colour White  white
Max. Luminance 33,012 cd/m2
Current Efficiency@100 

cd/m2

15.3 cd/A
Max. Powder Efficiency 10.7 lm W1
Device structure ITO/m-MTDATA/TPD/F-TBB*/Alq3/MgAg [10]
Colour Blue   blue oled
Max EQE 1.4%
Maximum luminance 3960 cd m-2 at 15.0 V

*For chemical structure information please refer to the cited references.

 

Literature and Reviews

  1. Nanoscale transport of charge-transfer states in organic donor–acceptor blends,  P. B. Deotare et al., Nat. Mater., 14, 1130-1135 (2015). DOI: 10.1038/NMAT4424.
  2. Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex, D. Graves et al., Adv. Funct. Mater., 24, 2343–2351 (2014). DOI: 10.1002/adfm.201303389.
  3. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014). http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
  4. Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
  5. Solution-Processed Phosphorescent Organic LightEmitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency, S. Wang et al., Sci. Report, 5:12487 (2015); DOI: 10.1038/srep12487.
  6. Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses, Q Huang et al., Appl. Phys. Lett. 104, 161112 (2014); http://dx.doi.org/10.1063/1.4870492.
  7. Red organic light-emitting diodes with high efficiency, low driving voltage and saturated red color realized via two step energy transfer based on ADN and Alq3 co-host system, K. Haq et al., Curr. Appl. Phys., 9, 257-262 (2009); doi:10.1016/j.cap.2008.02.005.
  8. Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
  9. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer, W. Xie et al., Semicond. Sci. Technol. 20, 326–329 (2005); doi:10.1088/0268-1242/20/3/013.
  10. Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
  11. Highly efficient flexible organic light-emitting devices utilizing F4-TCNQ/m-MTDATA multiple quantumwell structures, X. Wu et al., J. Luminescence 132, 1261–1264 (2012). doi:10.1016/j.jlumin.2011.12.084.
  12. High-efficiency electrophosphorescent organic light-emitting diodes with double lightemitting
    layers, X. Zhou et al., Appl. Phys. Lett., 81, 4070 (2002). doi: 10.1063/1.1522495.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.