TPD - N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine

N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, commonly abbreviated as TPD, is widely used as hole transport materials in organic electronic devices.
TPD is also used as a blue-violet light emitting material or host material on the phosphorescence organic light emitting diodes for its wide energy band is about 3.2 eV with highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 5.5 eV and 2.3 eV respectively [1, 2].
General Information
CAS number | 65181-78-4 |
Chemical formula | C38H32N2 |
Molecular weight | 516.67 g/mol |
Absorption | λmax 352 nm in THF |
Fluorescence | λem 398 nm in THF |
HOMO/LUMO | HOMO = 5.5 eV, LUMO = 2.3 eV |
Synonyms | TPD, N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, N,N'-Diphenyl-N,N'-di(m-tolyl)benzidine, 4,4'-Bis[N-phenyl-N-(m-tolyl)amino]biphenyl |
Classification / Family | Triphenylamine derivatives, Hole-injection materials, Hole transporting materials, Phosphorescent host materials, Light-emitting diodes, Organic electronics, Sublimed materials |
Product Details
Purity | Sublimed* >99% |
Melting point | 175-177 °C (lit.) |
Colour | White powder/crystals |
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure

Device Structure(s)
Device structure | ITO/m-MTDATA/TPD/F-TBB*/Alq3/MgAg [1] |
Colour | Blue ![]() |
Max EQE |
1.4% |
Maximum luminance |
3960 cd m-2 at 15.0 V |
Device structure |
ITO/75 wt% TPD:25 wt% PC (50nm) /TCTA (10nm)/6 % PtL30Cl*:94 % [TCTA: TCP] [1:1] (30 nm)/TAZ (30 nm)/LiF/Al [3] |
Colour | White ![]() |
EQE@500 cd/m2 | 11.3% |
Current Efficiency@500 cd/m2 | 23.5 cd/A |
Bias | 9.3 V |
Device structure | ITO/m-MTDATA*:F4-TCNQ (100 nm)/TPD (5 nm)/Alq3 (20 nm)/BPhen (10 nm)/Bphen:Li (30 nm)/LiF (1 nm)/Al (100 nm) [4] |
Colour | Green ![]() |
Max. Luminance | 10,000 cd/m2 at 5.2 V |
Max. Current Efficiency | 5.27 cd/A |
Device structure | ITO/Cu-Pc(10 nm)/TPD(50 nm)/Bepp2 (40 nm)/LiF(1.5 nm)/Al(200 nm) [5] |
Colour | Blue ![]() |
Max. Luminance | 4,000 cd/m2 |
Max. Power Efficiency | 0.55 lm W−1 |
Device structure | ITO/TPD (50 nm)/BePP2 (5 nm)/TPD (4 nm)/BePP2:rubrene (5 nm)/TPD (4 nm)/Alq (10 nm)/Al [6] |
Colour | White ![]() |
Max. Luminance | 20,000 cd/m2 |
Max. Power Efficiency | 1.11 lm W−1 |
Device structure | ITO/CuPc (18 nm)/TPD (50 nm)/Alq3 (60 nm)/BCP (10 nm)/LiF (1 nm)/Al (100 nm) [8] |
Colour | Green ![]() |
Max. Luminance | 5,993 cd/m2 |
Max. Current Efficiency | 3.82 cd/A |
Max. Power Efficiency | 2.61 lm W-1 |
Device structure | ITO/PEDOT:PSS/PVK:OXD-7:TPD:(Et-Cvz-PhQ)2Ir(pic)*/OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm) [9] |
Colour | Red ![]() |
Max. Current Efficiency | 17.5 cd/A |
Max. EQE | 10.6% |
Max. Power Efficiency | 6.42 lm W−1 |
Device structure | ITO/TPD (50 nm)/Zn(BTZ)2 (50 nm)/MgIn (200 nm) [10] |
Colour | Greenish White ![]() |
Max. Luminance | 10,190 cd/m2 |
Max. Power Efficiency | 0.89 lm W−1 |
*For chemical structure informations please refer to the cited references.
Characterisation

MSDS Documentation
Literature and Reviews
- Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
- Efficiency and Aging Comparison Between N,N′-Bis (3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD) Based OLED Devices, M. Maglione et al., Macromol. Symp., 247, 311–317 (2007).
- Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs, L. Murphy et al., Chem. Commun., 48, 5817-5819 (2012), DOI: 10.1039/C2CC31330H.
- Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
- Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material, Y. Li et al., Chem. Mater., 12, 2672–2675 (2000); DOI: 10.1021/cm000237u.
- Organic white light electroluminescent devices, S. Liu et al., Thin Solid Films, 363, 294-297 (2000); doi:10.1016/S0040-6090(99)01017-2.
- Highly efficient bilayer green phosphorescent organic light emitting devices, W-S. Jeon et al., Appl. Phys. Lett., 92, 113311 (2008); http://dx.doi.org/10.1063/1.2898527.
- High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units, C-C. Chang et al., Jpn. J. Appl. Phys., 43, 6418–6422 (2004); [DOI: 10.1143/JJAP.43.6418.
- High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
- White-Light-Emitting Material for Organic Electroluminescent Devices, Y. Hamada et al., Jpn. J. Appl. Phys. 35 L1339-L1341 (1996); http://iopscience.iop.org/1347-4065/35/10B/L1339.
- A Novel Yellow Fluorescent Dopant for High-Performance Organic Electroluminescent Devices, X. Q. Lin et al, Chem. Mater., 13 (2), 456–458 (2001), DOI: 10.1021/cm0004679.
- Organic plasmon-emitting diode, D. M. Koller et al., Nature Photonics 2, 684 - 687 (2008)
- Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer, et al., S. J. Kang, Appl. Phys. Lett. 81, 2581 (2002); http://dx.doi.org/10.1063/1.1511817.
- White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode?, J. Thompson et al., Appl. Phys. Lett. 79, 560 (2001); http://dx.doi.org/10.1063/1.1388875.
- Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics, H. Kim et al., J. Mater. Chem. A, 3, 17332-17343 (2015).
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.