TPD - N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine

Order Code: M401
MSDS sheet

Price

(excluding Taxes)

£50.00


General Information

CAS number 65181-78-4
Chemical formula C38H32N2
Molecular weight 516.67 g/mol
Absorption λmax 352 nm in THF
Fluorescence λem 398 nm in THF
HOMO/LUMO HOMO = 5.5 eV, LUMO = 2.3 eV
Synonyms TPD, N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, N,N'-Diphenyl-N,N'-di(m-tolyl)benzidine, 4,4'-Bis[N-phenyl-N-(m-tolyl)amino]biphenyl
Classification / Family Triphenylamine derivatives, Hole-injection materials, Hole transporting materials, Phosphorescent host materials, Light-emitting diodes, Organic electronics, Sublimed materials

 

Product Details

Purity Sublimed* >99%
Melting point 175-177 °C (lit.)
Colour White powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine tpd chemical structure
Chemical Structure of N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD); CAS No. 65181-78-4; Chemical Formula C38H32N2.

 

Applications

N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, commonly abbreviated as TPD, is widely used as hole transport materials in organic electronic devices.

TPD is also used as a blue-violet light emitting material or host material on the phosphorescence organic light emitting diodes for its wide energy band is about 3.2 eV with highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 5.5 eV and 2.3 eV respectively [1, 2].

 

Device structure                      ITO/m-MTDATA/TPD/F-TBB*/Alq3/MgAg [1]
Colour Blue   blue oled
Max EQE

1.4%

Maximum luminance

3960 cd m-2 at 15.0 V

Device structure

ITO/75 wt% TPD:25 wt% PC (50nm) /TCTA (10nm)/6 % PtL30Cl*:94 % [TCTA: TCP] [1:1] (30 nm)/TAZ (30 nm)/LiF/Al [3]

Colour White   white
EQE@500 cd/m2 11.3%
Current Efficiency@500 cd/m2 23.5 cd/A
Bias 9.3 V
Device structure                                            ITO/m-MTDATA*:F4-TCNQ (100 nm)/TPD (5 nm)/Alq3 (20 nm)/BPhen (10 nm)/Bphen:Li (30 nm)/LiF (1 nm)/Al (100 nm) [4]                   
Colour Green  green
Max. Luminance 10,000 cd/m2 at 5.2 V
Max. Current Efficiency 5.27 cd/A
Device structure                      ITO/Cu-Pc(10 nm)/TPD(50 nm)/Bepp2 (40 nm)/LiF(1.5 nm)/Al(200 nm) [5]
Colour Blue    blue
Max. Luminance 4,000 cd/m2
Max. Power Efficiency 0.55 lm W1
Device structure ITO/TPD (50 nm)/BePP2 (5 nm)/TPD (4 nm)/BePP2:rubrene (5 nm)/TPD (4 nm)/Alq (10 nm)/Al [6]                      
Colour White   white
Max. Luminance 20,000 cd/m2
Max. Power Efficiency 1.11 lm W1
Device structure ITO/CuPc (18 nm)/TPD (50 nm)/Alq3 (60 nm)/BCP (10 nm)/LiF (1 nm)/Al (100 nm) [8]
Colour Green   green
Max. Luminance 5,993 cd/m2
Max. Current Efficiency 3.82 cd/A
Max. Power Efficiency   2.61 lm W-1
Device structure                                            ITO/PEDOT:PSS/PVK:OXD-7:TPD:(Et-Cvz-PhQ)2Ir(pic)*/OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm) [9]
Colour Red   red
Max. Current Efficiency 17.5 cd/A 
Max. EQE 10.6%
Max. Power Efficiency 6.42 lm W1
Device structure ITO/TPD (50 nm)/Zn(BTZ)(50 nm)/MgIn (200 nm) [10]
Colour Greenish White   white
Max. Luminance 10,190 cd/m2
Max. Power Efficiency 0.89 lm W1

*For chemical structure informations please refer to the cited references.

 

Characterisation

hplc trace of tpd
HPLC trace of N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD).

 

Literature and Reviews

  1. Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
  2. Efficiency and Aging Comparison Between N,N′-Bis (3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD) Based OLED Devices, M. Maglione et al., Macromol. Symp., 247, 311–317 (2007).
  3. Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs, L. Murphy et al., Chem. Commun., 48, 5817-5819 (2012), DOI: 10.1039/C2CC31330H.
  4. Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
  5. Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material, Y. Li et al., Chem. Mater., 12, 2672–2675 (2000); DOI: 10.1021/cm000237u.
  6. Organic white light electroluminescent devices, S. Liu et al., Thin Solid Films, 363, 294-297 (2000); doi:10.1016/S0040-6090(99)01017-2. 
  7. Highly efficient bilayer green phosphorescent organic light emitting devices, W-S. Jeon et al., Appl. Phys. Lett., 92, 113311 (2008); http://dx.doi.org/10.1063/1.2898527.
  8. High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units, C-C. Chang et al., Jpn. J. Appl. Phys., 43, 6418–6422 (2004); [DOI: 10.1143/JJAP.43.6418.
  9. High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
  10. White-Light-Emitting Material for Organic Electroluminescent Devices, Y. Hamada et al., Jpn. J. Appl. Phys. 35 L1339-L1341 (1996); http://iopscience.iop.org/1347-4065/35/10B/L1339.
  11. A Novel Yellow Fluorescent Dopant for High-Performance Organic Electroluminescent Devices, X. Q. Lin et al, Chem. Mater., 13 (2), 456–458 (2001), DOI: 10.1021/cm0004679.
  12. Organic plasmon-emitting diode, D. M. Koller et al., Nature Photonics 2, 684 - 687 (2008) 
  13. Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer, et al., S. J. Kang, Appl. Phys. Lett. 81, 2581 (2002); http://dx.doi.org/10.1063/1.1511817.
  14. White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode?, J. Thompson et al., Appl. Phys. Lett. 79, 560 (2001); http://dx.doi.org/10.1063/1.1388875.
  15. Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics, H. Kim et al., J. Mater. Chem. A, 3, 17332-17343 (2015).