F4TCNQ

Order Code: M351
MSDS sheet

Price

(excluding Taxes)

£99.00


General Information

CAS number 29261-33-4
Chemical formula C12F4N4
Molecular weight 276.15 g/mol
HOMO/LUMO HOMO = 8.3 eV, LUMO = 5.2 eV
Synonyms

F4-TCNQ
2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane
(2,3,5,6-Tetrafluoro-2,5-cyclohexadiene-1,4-diylidene)dimalononitrile
7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane

Classification / Family

Fluorinated compounds, p-type dopant, Strong electron acceptor, Hole-injection materials, Hole-transport layer material, OLEDs, Polymer Solar Cells, Perovskite Solar Cells, OFETs.

 

Product Details

Purity Sublimed* >99%
Melting point 291 °C (DSC onset)
Colour Brown-yellow powder

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice.  For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

Chemical Structure

 

 F4TCNQ 

Chemical structure of  2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ); CAS number 29261-33-4; Chemical formula C12F4N4.

 

Applications

F4TCNQ is one of the most widely used and most effective p-type dopant due to its strong electron accepting ability and the extended π system. It has a deep LUMO level (-5.2 eV) which is energetically in the vicinity of the HOMO level of many organic semiconductors. Doping is facilitated by charge transfer from the HOMO level of the host to the LUMO of the dopant molecule. Pin devices with F4TCNQ doped 4,4',4''-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) serving as the p-doped HTL show high luminance and efficiency at extremely low operating voltages: For instance, a luminance of 1000 cd/m2 is reached at a voltage of 2.9 V [1].

It has been reported that by controlling the doping concentration, the PCE of the PCDTBT:F4TCNQ solar cells increased from 6.41% to 7.94% mainly due to improving the photocurrent with a F4TCNQ weight ratio of the blend lower than 0.5% [2]. F4TCNQ is also used as the p-type dopant for graphenes [3,4].

 

Device structure                                            ITO/m-mTDATA*:F4-TCNQ (100 nm)/TPD (5 nm)/Alq3 (20 nm) /BPhen (10 nm)/ Bphen:Li (30 nm)/LiF (1 nm)/Al (100 nm) [1]                   
Colour Green  green
Luminance 1,000 cd/mat 2.9 V (high brightness at low operating voltage)
Max. Current Efficiency 5.27 cd/A
Device structure                                            ITO/MeO–TPD*:F4-TCNQ (100 nm)/Spiro-TAD (10 nm)/TCTA:Ir(ppy)3 (5 nm)/Bphen (10 nm)/Cs-doped Bphen (50 nm)/Al [5]                 
Colour Green  green
Max. EQE 13.7%
Max. Power Efficiency 52 lm W1
Device structure ITO/0.4 wt% F4TCNQ doped α NPD (30 nm)/ 5 wt% Ir (ppy)3 doped CBP (50 nm)/BPhen (30 nm)/20 wt% TCNQ mixed BPhen (1.5 nm)/Al [6]
Color Green green
Luminance@15 V 1,320 cd/m2 
Power Efficiency@14 V 56.6 lm W1  
Current Efficiency@14 V 23.17 cd/A
Device structure                                       ITO/F4TCNQ (3 nm)/MeO-Spiro-TPD (27 nm)/CBP + BCzVbi* (50 nm)/BPhen (10 nm)/TCNQ mixed BPhen (1.5 nm)/Al [7]
Color                                  Red red
Luminance@ 10 mA/cm2 1,790 cd/m2
Power Efficiency@ 10 mA/cm2      4.65 lm W1  
Current Efficiency@ 10 mA/cm2 18.0 cd/A
Device structure ITO/MeO-TPD: F4-TCNQ (100 nm, 4%)/NPB (15 nm)/CBP: (MPPZ)2Ir(acac) (25 nm, 8.5%)/CBP (4 nm)/CBP: DSA-ph (20 nm, 3%)/ETLs (30 nm)/LiF (1 nm)/Al (200 nm) [8]
Color White  white
Max. Luminance 97,067 cd/m2
Max. Current Efficiency 42.8 cd/A
Max. Power Efficiency 21.1 lm W1  
Device structure ITO (120 nm)/0.4 wt. % F4-TCNQ:α-NPD (35 nm)/5 wt. % BCzVBi:CBP (20 nm)/ 5 wt. % Ir(ppy)3:CBP (4 nm)/0.75 wt. % Ir(btp)2acac:CBP (12.5 nm)/BAlq (30 nm)/LiF (1 nm)/Al (150 nm) [9]
Color White  white
Max. Luminance 106,100 cd/m2
Max. Current Efficiency 50.3 cd/A
Max. Power Efficiency 26.3 lm W1  
Device structure ITO/PTAA/CH3NH3PbI3/PCBM/C60/BCP/Ag [10] ITO/PTAA:F4TCNQ (1 wt%)/CH3NH3PbI3/PCBM/C60/BCP/Ag [10]
Jsc (mA cm-2) 21.6 21.6
Voc (V) 1.05 1.09
FF (%) 65.7 74
PCE (best) 14.8 17.5

*For chemical structure informations please refer to the cited references.

Characterisation

dsc trace of f4tcnq

DSC trace of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).

 

Literature and Reviews

  1. Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.1432110.
  2. Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells, Y. Zhang et al., Adv. Mater., 25, 7038–7044 (2013).
  3. Band Gap Opening of Bilayer Graphene by F4-TCNQ Molecular Doping and Externally Applied Electric Field, X. Tian et al., J. Phys. Chem. B, 114 (35), 11377–11381 (2010).
  4. p-type doping of graphene with F4-TCNQ, H. Pinto et al., J. Phys.: Condens. Matter 21, 402001 (2009), stacks.iop.org/JPhysCM/21/402001.
  5. Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction, G. He et al., J. Appl. Phys. 95, 5773 (2004); http://dx.doi.org/10.1063/1.1702143.
  6. Novel organic electron injection layer for efficient and stable organic light emitting diodes, R. Grover et al., J. Luminescence, 146, 53–56 (2014). http://dx.doi.org/10.1016/j.jlumin.2013.09.004.
  7. Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer, R. Grover et al., Phys. Status Solidi RRL 8 (1), 81–85 (2014). DOI: 10.1002/pssr.201308133.
  8. Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance, B. Liu et al., J. Ind.&Eng. Chem., 30, 85–91 (2015); http://dx.doi.org/10.1016/j.jiec.2015.05.006.
  9. Conductive cooling in white organic light emitting diode for enhanced efficiency and life time,
    P. Tyagi et al., Appl. Phys. Lett. 106, 013301 (2015); http://dx.doi.org/10.1063/1.4903800.
  10. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells, Q. Wang et al., Nano Energy 15, 275–280 (2015); doi:10.1016/j.nanoen.2015.04.029.