FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code B231-1g
Price $300 ex. VAT

Quality assured

Expert support

Volume discounts

Worldwide shipping

Fast and secure


Bathocuproine, one of the most popular HBL materials used in organic electronics

Aids the improvement of PCE of polymer organic solar cells when used as a buffer layer


Bathocuproine (BCP) is a wide-band-gap material and has a high electron affinity. When it is embedded into organic electronic devices, bathocuproine acts as an exciton-blocking barrier which prohibits exciton diffusion process towards the Al electrode otherwise being quenched. One of the most commonly used buffer layer between acceptor and cathode layers is bathocuproine. The introduction of the buffer layer can greatly improve the PCE of polymer organic solar cells. BCP is one of the most popular hole-blocking layer materials that is used in organic electronics, including perovskite solar cells.

Bathocuproine (BCP) from Ossila was used in the high-impact paper (IF 30.85)

Bathocuproine (BCP) from Ossila was used in the high-impact paper (IF 30.85), Engineering Band-Type Alignment in CsPbBr3 Perovskite-Based Artificial Multiple Quantum Wells, K. Lee et al., Adv. Mater., 33 (17), 2005166 (2021); DOI: 10.1002/adma.202005166.

It was demonstrated that a BCP buffer layer reduces nonradiative recombination of excitons at the C60 –Al interface. Its most important function is to establish an Ohmic contact between the C60 film and the Al electrode in photovoltaic devices [4].

General Information

Full name 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
Synonyms
  • Bathocuproine
  • BCP
CAS number 4733-39-5
Molecular formula C26H20N2
Molecular weight 360.45 g/mol
HOMO / LUMO HOMO ~ 6.4 eV      LUMO ~2.9 eV
Classification / Family Electron-transport layer (ETL), Electron-injection layer (EIL), Hole-blocking layer, OFET, OLED, Organic Photovoltaics, Perovskite solar cells, Sublimed materials.

Product Details

Purity >99.5% (sublimed)
>98.0% (unsublimed)
Melting point 280-282°C (lit.)
Appearance Light yellow powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials.

Chemical Structure

Chemical structure of BCP
Chemical Structure of Bathocuproine (BCP)

Device Structure(s)

Device structure ITO/DNTPD* (60 nm)/NPB (20 nm)/mCP (10 nm)/mCP:FIrpic (25 nm)/CBP:Ir(piq)2acac (5 nm)/BCP (5 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) [5]
Colour White white light emiting device
EQE@500 cd/m2 8.2 %
Current Efficiency (@500 cd/m2) 12.7 lm W1
Device structure ITO/NPB (30 nm)/NPB: DCJTB: C545T* (10 nm)/NPB (4 nm)/DNA (8 nm)/BCP (9 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [6]
Colour White white light emiting device
Max. Luminance  13,600 cd/m2
Max. Current Efficiency 12.3 cd/A
Max. Power Efficiency 4.4 lm W1
Device structure ITO/2T-NATA (17 nm)/TPAHQZn* (25 nm)/NPBX* (15 nm)/BCP (8 nm)/ Alq3 (35 nm)/LiF (0.5 nm)/Al (120 nm) [7]
Colour White white light emiting device
Max. EQE 17.5%
Max. Luminance 12,930 cd/m2 (12 V) 
Max. Current Efficiency 2.66 cd/A (10 V)
Device structure ITO/ NPB(60 nm)/Alq3:DCM(7nm)/BCP(12 nm)/ Alq3(36nm)/ MgAg(200 nm) [8]
Colour Red red light emiting device
Max. Luminance 1, 000 cd/m2
Max. Current Efficiency 5.66 cd/A 
Device structure ITO/α-NPD* (50 nm)/7%-Ir(ppy)3:CBP (20 nm)/BCP (10 nm)/Alq3 (40 nm)/Mg–Ag (100 nm)/Ag (20 nm)  [9]
Colour Green green light emiting device
Max EQE (12.0±0.6)%
Max. Powder Efficiency (45±2) lm W1

*For chemical structure information please refer to the cited references.

Characterisation

HPLC of BCP
HPLC trace of Bathocuproine (BCP).
1H NMR BCP Bathocuproine in CDCl3
1H-NMR spectrum of 2,9-Dimethyl-4,7-diphenyl-1,10-phenantroline, also known as Bathocuproine, BCP in CDCl3: Instrument AVIIIHD400 (see full version).

Pricing

Grade (Purity) Order Code Quantity Price
Sublimed (>99.5%) B231 1 g
£240
Sublimed (>99.5%) B231 5 g £950
Unsublimed (>98.0%) B232 5 g £420

MSDS Documentation

BCP MSDSBCP MSDS sheet

Literature and Reviews

  1. Detailed analysis of bathocuproine layer for organic solar cells based on copper phthalocyanine and C60, J. Huang et al., J. Appl. Phys., 105, 073105 (2009)
  2. On the Role of Bathocuproine in Organic Photovoltaic Cells, H. Gommans et al., Adv. Funct. Mater., 18, 3686-3691 (2008)
  3. A Blue Organic Light Emitting Diode, Y. Kijima et al., J. Appl. Phys., 38, 5274-5277 (1999)
  4. On the function of a bathocuproine buffer layer in organic photovoltaic cells, M. Vogel et al., Appl. Phys. Lett., 89, 163501 (2006).
  5. Improved color stability in white phosphorescent organic light-emitting diodes using charge confining structure without interlayer, S-H. Kim et al., Appl. Phys. Lett. 91, 123509 (2007); http://dx.doi.org/10.1063/1.2786853.
  6. High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
  7. White organic light-emitting devices based on novel (E)-2-(4-(diphenylamino) styryl)quinolato zinc as a hole- transporting emitter, G. Ding et al., Semicond. Sci. Technol. 24, 025016 (2009); stacks.iop.org/SST/24/025016.
  8. High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure, Z. Xie et al., Appl. Phys. Lett., 79, 1048 (2001); doi: 10.1063/1.1390479.
  9. Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film, C. Adachi et aL., Org. Electronics, 2(1), 37-43 (2001), doi:10.1016/S1566-1199(01)00010-6.
  10. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells, Y. Lin et al., adv. Mater., 1700607 (2017); DOI: 10.1002/adma.201700607.
  11. Role of bathocuproine as hole-blocking and electron-transporting layer in organic light emitting devices, R.Tomova et al., Phys. Status Solidi. C, 7, 3–4, 992–995 (2010); DOI: 10.1002/pssc.200982725.

To the best of our knowledge the information provided here is accurate. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only.

Return to the top