2-TNATA


Order Code: M612
Price excludes taxes
Not in stock (price excludes taxes)
Price: Loading...

Pricing

 Grade Order Code Quantity Price
Sublimed (>99.0% purity) M611 500 mg £177.00
Unsublimed (>98.0% purity) M612 1 g £169.00
Sublimed (>99.0% purity) M611 1 g £282.00
Unsublimed (>98.0% purity) M612 5 g £508.00
Sublimed (>99.0% purity) M611 5 g £1060.00

General Information

CAS number 185690-41-9
Chemical formula C66H48N4
Molecular weight 897.11 g/mol
Absorption λmax 326 nm (THF)
Fluorescence λem 490 nm (THF)
HOMO/LUMO HOMO = 5.1 eV, LUMO = 2.2 eV
Synonyms
  • 2-TNATA
  • 2TNATA
  • 2T-NATA
  • 4,4′,4′′-Tris[2-naphthyl(phenyl)amino] triphenylamine
Classification / Family Triphenylamine derivatives, Hole-injection materials, Hole-transporting materials, Light-emitting diodes

Product Details

Purity

>99.0% (sublimed) 

>98.0% (unsublimed)
Melting point 246-248 °C (lit.)
Appearance Pale yellow to yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

2-tnata structure
Chemical Structure of 2-TNATA; CAS No. 185690-41-9; Chemical formula C66H48N4.

 

Applications

4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA), a starburst type molecule, gives very homogeneous thin-films that are ideal as hole-injection layers due to its low ionisation potential (of around 5.1 eV [1]).

It has been demonstrated that p-i-n organic light-emitting diodes (OLEDs) incorporating a p-doped transport layer that comprises tungsten oxide (WO3) and 2-TNATA significantly improves hole injection and conductivity of the Alqbased p-i-n OLEDs with long lifetime, low driving voltage (3.1 V), and high power efficiency (3.5 lm/W) at 100 cd/m[2].

 

Device structure ITO/2-TNATA:33% WO3 (100 nm)/NPB (10 nm)/Alq3 (30 nm)/Bphen (20 nm)/BPhen: 2% Cs (10 nm)/Al (150 nm) [2]
Colour Green  green
Operating Voltage for 100 cd/m2 3.1 V
Current Efficiency for 20 mA/cm2 4.4 cd/A
Power Efficiency for 20 mA/cm2 3.3 lm W1
Device structure ITO/2-TNATA (60 nm)/NPB (15 nm)/TAT* (30 nm)/ Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) [4]
Colour Deep Blue  dellp blue
EQE at 10 mA/cm2 7.18
Current Efficiency at 10 mA/cm2 3.64 cd/A
Power Efficiency at 10 mA/cm2 1.87 lm W1
Device structure

ITO/2T-NATA (17 nm)/TPAHQZn* (25 nm)/NPBX* (15 nm)/BCP (8 nm)/

Alq3 (35 nm)/LiF (0.5 nm)/Al (120 nm) [6]

Colour White  white
Max. EQE 17.5%
Max. Luminance 12,930 cd/m(12 V) 
Max. Current Efficiency 2.66 cd/A (10 V)
Device structure ITO/2T-NATA (20 nm)/NPB (60 nm)/Zn(BTZ)2:Ir(DBQ)2(acac) (80 nm)/Alq3 (70 nm)/LiF (1nm)/Al (200 nm) [7]
Colour Red  red
Max. Luminance 25,000 cd/m2
Max. Current Efficiency 12 cd/A
Device structure glass/Ag (100 nm)/ITO (90 nm)/2-TNATA (60 nm)/NPB (15 nm)/ DPVBi:DCJTB (1.2%, 30 nm)/Alq3 (20 nm)/Li (1.0 nm)/Al (2.0 nm)/Ag (20 nm)/ITO(63 nm)/SiO2 (42 nm) [8]
Colour White  white
Max. Luminance  14,500 cd/m2
Max. Power Efficiency  1.4 lm W1
Device structure

glass/ITO (150 nm)/2-TNATA (60 nm)/NPB (15 nm)/DPVBi:DCJTB (20 nm, 0.08%)/Alq3 (35 nm)/Li (1.0 nm)/Al (100 nm) [9]

Colour White  white
Max. EQE 2.47%
Max. Luminance  64,200 cd/m2
Max. Power Efficiency  4.27 lm W1
Device structure ITO (150 nm)/2T-NATA (25 nm)/NPB (5 nm) ITCTA (10 nm)/GD* 10 wt% doped GH* (20 nm)/ TPBi (30 nm)/ LiF (0.5 nm)/ AI (l00 nm) [10]
Colour Green  green
Current Efficiency for 20 mA/cm2 62.6 cd/A
Power Efficiency for 20 mA/cm2 61.4 lm W1

*For chemical structure information, please refer to the cited references.

 

Literature and Reviews

  1. Exciplex formation at the organic solid/solid interface and tuning of the emission color in organic electroluminescent devices, K. Okumoto et al., , J. Lumin. 87–89, 1171 (2000). doi:10.1016/S0022-2313(99)00584-0.
  2. Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
  3. Pure White Organic Light-Emitting Diode with Lifetime Approaching the Longevity of Yellow Emitter, J-H. Jou et al., ACS Appl. Mater. Interfaces, 3, 3134–3139 (2011). dx.doi.org/10.1021/am2006383.
  4. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design, S-K. Kim et al., J. Mater. Chem., 18, 3376–3384 (2008). DOI: 10.1039/B805062G.
  5. Control of the Color Coordinates of Blue Phosphorescent Organic Light-Emitting Diodes by Emission Zone, S. H. Rhee et al., ECS Solid State Letters, 3 (3) R7-R10 (2014). DOI: 10.1149/2.003403ssl.
  6. White organic light-emitting devices based on novel (E)-2-(4-(diphenylamino) styryl)quinolato zinc as a hole- transporting emitter, G. Ding et al., Semicond. Sci. Technol. 24, 025016 (2009). stacks.iop.org/SST/24/025016.
  7. Effect of A Series of Host Material on Optoelectronic Performance of Red Phosphorescent OLED, H. Li et al., Chin. J. Luminance, 5, 585-589, 2009.
  8. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer, M. Kim et al., Thin Solid Films 516, 3590–3594 (2008); doi:10.1016/j.tsf.2007.08.078.
  9. High Efficiency White Organic Light-Emitting Diodes from One Emissive Layer, C. Jeong et al., Jpn. J. Appl. Phys., 46 (2), 806-809 (2007); http://iopscience.iop.org/1347-4065/46/2R/806.
  10. High-Efficiency Green Phosphorescent Organic Light-Emitting Devices, L. Li et al., ICEOE, V4-96-97 (2011); DIO:10.1109/ICEOE.2011.6013434.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.