Alq3

Order Code: M381
MSDS sheet

Price

(excluding Taxes)

£59.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99% purity) M381 1 g £59
Sublimed (>99% purity) M381 5 g £99
Sublimed (>99% purity) M381 10 g £149

General Information

Full name Tris(8-hydroxyquinoline)aluminum
Synonyms
  • Alq3 
  • 8-Hydroxyquinoline aluminum salt
  • Aluminum 8-hydroxyquinolinate
  • Aluminum oxinate
  • Tris(8-hydroxyquinolinato)aluminum
CAS number 2085-33-8 
Molecular formula C27H18AlN3O3
Molecular weight 459.43 g/mol
Absorption λmax 259 nm (in THF)
Fluorescence λmax 512 nm (in THF)
HOMO / LUMO HOMO 5.62 eV      LUMO 2.85 eV
Classification / Family Organometallic, Electron transport-layer materials (ETL), Electron injection-layer materials (EIL), OLED emitting layer material (ELM)

 

Product Details

Purity >99% (sublimed)
Melting point 415.4 °C (DSC onset)
Appearance Yellow-greenish powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

chemical structure Alq3 | Tris(8-hydroxyquinolinato)aluminum | 2085-33-8
 
Chemical Structure of tris-(8-hydroxyquinoline)aluminum (Alq3); CAS No. 2085-33-8; Chemical Formula C27H18AlN3O3

 

Applications


Tris(8-hydroxyquinoline)aluminum(III), commonly known as Alq3, is widely used in organic light-emitting diodes (OLEDs) as an electron-transport material (ETM) and emitting layer material (ELM) due to its high thermal stability, high quantum yield of fluorescence and high electron-transport ability.

Alq3 as the electron-transport and emitting layer material was the first efficient low molecular weight OLED reported by Tang in 1987 [1]. Since then, metaloquinolates have become the focus of new electroluminescent materials research, with Alq3 being the most studied.

 

Device structure ITO/ NPB(60 nm)/Alq3:DCM(7nm)/BCP(12 nm)/ Alq3(36nm)/ MgAg(200 nm) [2]
Colour Red red
Max. Luminance 1, 000 cd/m2
Max. Current Efficiency 5.66 cd/A 

 

Device structure  ITO/m-MTDATA:MoOx (3:1, 15 nm)/m-MTDATA (30 nm)/NPB (5 nm)/Alq3 (50 nm)/BPhen (10 nm)/LiF (1 nm)/Al (100 nm) [3]
Colour Green green
Max. Luminance 42,090 cd/m2 
Max. Current Efficiency 4.77 cd/A
Max. Power Efficiency 3.5 lm W1

 

Device structure  ITO/α-NPD* (50 nm)/7%-Ir(ppy)3:CBP (20 nm)/BCP (10 nm)/Alq3 (40 nm)/Mg–Ag (100 nm)/Ag (20 nm)  [4]
Colour Green green
Max EQE (12.0±0.6)%
Max. Powder Efficiency (45±2) lm W1

 

Device structure

ITO/NPB (30 nm)/NPB: DCJTB: C545T* (10 nm)/NPB (4 nm)/DNA (8 nm)/(BCP) (9 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [5]                      
Colour White white
Max. Luminance  13,600 cd/m2
Max. Current Efficiency 12.3 cd/A
Max. Power Efficiency 4.4 lm W1

 

Device structure                                            ITO/2-TNATA:33% WO3 (100 nm)/NPB (10 nm)/Alq3 (30 nm)/Bphen (20 nm)/BPhen: 2% Cs (10 nm)/Al (150 nm) [6]
Color Green green
Operating Voltage for 100 cd/m2 3.1 V
Current Efficiency for 20 mA/cm2 4.4 cd/A
Power Efficiency for 20 mA/cm2 3.3 lm W1

 

Device structure ITO/CuPc(6.0 nm)/[NPB*(3.8 nm)/CuPc (1.5 nm)]4/NPB (15.0 nm)/Alq3 (60.0 nm)/Mg:Ag/Ag [7]                               
Color Green green
Max. Luminance 15,000 cd/m2
Max. Current             Efficiency       10.8 cd/A

*For chemical structure information please refer to the cited references

Characterisation

dsc-alq3

DSC trace of Tris-(8-hydroxyquinoline)aluminum (Alq3).

Literature and Reviews

  1. Organic electroluminescent diodes, C. Tang et al., Appl. Phys. Lett. 51, 913 (1987)
  2. High-efficiency red electroluminescence from a narrow recombination zone confined
    by an organic double heterostructure,
    Z. Xie et al., Appl. Phys. Lett., 79, 1048 (2001); doi: 10.1063/1.1390479 .
  3. Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminumbased
    organic light-emitting diodes with a MoOx p-doping layer, G. Xie et al., Appl. Phys. Lett., 92, 093305 (2008); doi: 10.1063/1.2890490.
  4. Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film, C. Adachi et aL., Org. Electronics, 2(1), 37-43 (2001), doi:10.1016/S1566-1199(01)00010-6.
  5. High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
  6. Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
  7. Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells, Y. Qiu et al., Phys. Lett., 80, 2628 (2002); Appl. doi: 10.1063/1.1468894.
  8. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III), M. D. Halls et al., Chem. Mater., 13 (8), 2632–2640 (2001), DOI: 10.1021/cm010121d.
  9. Organic electroluminescent devices with improved stability, S. A. Van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996); http://dx.doi.org/10.1063/1.117151
  10. Metal−Alq3 Complexes:  The Nature of the Chemical Bonding, A. Curioni et al., J. Am. Chem. Soc., 121 (36), pp 8216–8220 (1999).
  11. Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer, B. Y. Kadem et al., J Mater Sci: Mater Electron 26:3976–3983 (2015), DOI 10.1007/s10854-015-2933-3.
  12. The impurity effects on OLEDs via transient electroluminescence analysis, C.-F. Lin et al., IEEE 17-20 (2015), 10.1109/AM-FPD.2015.7173184.