Alq3

Order Code: M381
MSDS sheet

Price

(excluding Taxes)

£59.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99% purity) M381 1 g £59
Sublimed (>99% purity) M381 5 g £99
Sublimed (>99% purity) M381 10 g £149

General Information

Full name Tris(8-hydroxyquinoline)aluminum
Synonyms Alq3, 8-Hydroxyquinoline aluminum salt, Aluminum 8-hydroxyquinolinate, Aluminum oxinate, Tris(8-hydroxyquinolinato)aluminum
CAS number 2085-33-8 
Molecular formula C27H18AlN3O3
Molecular weight 459.43 g/mol
Absorption λmax 259 nm (in THF)
Fluorescence λmax 512 nm (in THF)
HOMO / LUMO HOMO 5.62 eV      LUMO 2.85 eV
Classification / Family Organometallic, Electron transport layer materials (ETL), Electron Injection layer materials (EIL) OLED Emitting layer material (ELM)

 

Product Details

Purity sublimed* >99% 
Melting point 415.4 °C (DSC onset)
Appearance Yellow-greenish powder

 *Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals that only go through two physical stages, from a solid state to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

Chemical Structure

chemical structure Alq3 | Tris(8-hydroxyquinolinato)aluminum | 2085-33-8
 
Chemical Structure of tris-(8-hydroxyquinoline)aluminum (Alq3); CAS No. 2085-33-8; Chemical Formula C27H18AlN3O3

 

Applications


Tris(8-hydroxyquinoline)aluminum(III), commonly known as Alq3, is widely used in organic light-emitting diodes (OLEDs) as an electron transport material (ETM) and emitting layer material (ELM) due to its high thermal stability, high quantum yield of fluorescence and high electron-transport ability.

Alq3 as the electron-transport and emitting layer material was the first efficient low molecular weight OLED reported by Tang in 1987 [1] and since then metaloquinolates have become the focus of new electroluminescent materials research with Alq3 being the most studied.

 

Device structure ITO/ NPB(60 nm)/Alq3:DCM(7nm)/BCP(12 nm)/ Alq3(36nm)/ MgAg(200 nm) [2]
Colour Red red
Max. Luminance 1, 000 cd/m2
Max. Current Efficiency 5.66 cd/A 

 

Device structure  ITO/m-MTDATA:MoOx (3:1, 15 nm)/m-MTDATA (30 nm)/NPB (5 nm)/Alq3 (50 nm)/BPhen (10 nm)/LiF (1 nm)/Al (100 nm) [3]
Colour Green green
Max. Luminance 42,090 cd/m2 
Max. Current Efficiency 4.77 cd/A
Max. Power Efficiency 3.5 lm W1

 

Device structure  ITO/α-NPD* (50 nm)/7%-Ir(ppy)3:CBP (20 nm)/BCP (10 nm)/Alq3 (40 nm)/Mg–Ag (100 nm)/Ag (20 nm)  [4]
Colour Green green
Max EQE (12.0±0.6)%
Max. Powder Efficiency (45±2) lm W1

 

Device structure

ITO/NPB (30 nm)/NPB: DCJTB: C545T* (10 nm)/NPB (4 nm)/DNA (8 nm)/(BCP) (9 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [5]                      
Colour White white
Max. Luminance  13,600 cd/m2
Max. Current Efficiency 12.3 cd/A
Max. Power Efficiency 4.4 lm W1

 

Device structure                                            ITO/2-TNATA:33% WO3 (100 nm)/NPB (10 nm)/Alq3 (30 nm)/Bphen (20 nm)/BPhen: 2% Cs (10 nm)/Al (150 nm) [6]
Color Green green
Operating Voltage for 100 cd/m2 3.1 V
Current Efficiency for 20 mA/cm2 4.4 cd/A
Power Efficiency for 20 mA/cm2 3.3 lm W1

 

Device structure ITO/CuPc(6.0 nm)/[NPB*(3.8 nm)/CuPc (1.5 nm)]4/NPB (15.0 nm)/Alq3 (60.0 nm)/Mg:Ag/Ag [7]                               
Color Green green
Max. Luminance 15,000 cd/m2
Max. Current             Efficiency       10.8 cd/A

*For chemical structure information please refer to the cited references

Characterisation

dsc-alq3

DSC trace of Tris-(8-hydroxyquinoline)aluminum (Alq3).

Literature and Reviews

  1. Organic electroluminescent diodes, C. Tang et al., Appl. Phys. Lett. 51, 913 (1987)
  2. High-efficiency red electroluminescence from a narrow recombination zone confined
    by an organic double heterostructure,
    Z. Xie et al., Appl. Phys. Lett., 79, 1048 (2001); doi: 10.1063/1.1390479 .
  3. Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminumbased
    organic light-emitting diodes with a MoOx p-doping layer, G. Xie et al., Appl. Phys. Lett., 92, 093305 (2008); doi: 10.1063/1.2890490.
  4. Efficient electrophosphorescence using a doped ambipolar conductive molecular organic thin film, C. Adachi et aL., Org. Electronics, 2(1), 37-43 (2001), doi:10.1016/S1566-1199(01)00010-6.
  5. High efficiency white organic light-emitting devices by effectively controlling exciton recombination region, F. Guo et al., Semicond. Sci. Technol. 20, 310–313 (2005).
  6. Highly Power Efficient Organic Light-Emitting Diodes with a p-Doping Layer, C-C. Chang et al., Appl. Phys. Lett., 89, 253504 (2006); doi: 10.1063/1.2405856.
  7. Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells, Y. Qiu et al., Phys. Lett., 80, 2628 (2002); Appl. doi: 10.1063/1.1468894.
  8. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III), M. D. Halls et al., Chem. Mater., 13 (8), 2632–2640 (2001), DOI: 10.1021/cm010121d.
  9. Organic electroluminescent devices with improved stability, S. A. Van Slyke et al., Appl. Phys. Lett. 69, 2160 (1996); http://dx.doi.org/10.1063/1.117151
  10. Metal−Alq3 Complexes:  The Nature of the Chemical Bonding, A. Curioni et al., J. Am. Chem. Soc., 121 (36), pp 8216–8220 (1999).
  11. Enhancement of power conversion efficiency of P3HT:PCBM solar cell using solution processed Alq3 film as electron transport layer, B. Y. Kadem et al., J Mater Sci: Mater Electron 26:3976–3983 (2015), DOI 10.1007/s10854-015-2933-3.
  12. The impurity effects on OLEDs via transient electroluminescence analysis, C.-F. Lin et al., IEEE 17-20 (2015), 10.1109/AM-FPD.2015.7173184.