OXD-7

Order Code: M451
MSDS sheet

Price

(excluding Taxes)

£89.00


General Information

CAS number 138372-67-5
Chemical formula C30H30N4O2
Molecular weight 478.58 g/mol
Absorption λmax 292 (THF)
Fluorescence λem 347 nm (THF)
HOMO/LUMO HOMO = 6.5 eV, LUMO = 3.0 eV
Synonyms
  • 1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene
  • 1,3-Bis[5-(4-tert-butylphenyl)-2-[1,3,4]oxadiazolyl]benzene
Classification / Family

Electron-injection materials, Electron transporting materials, Phosphorescent host materials, Organic light-emitting diodes, Organic electronics

 

Product Details

Purity  > 99.4% (sublimed)
Melting point  241 °C (lit.)
Colour White powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

 

Chemical Structure

oxd-7 chemical structure
Chemical Structure of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7); CAS No. 138372-67-5; Chemical Formula C30H30N4O2.

 

Applications

1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) is a well known electron-transporting material due to the electron-accepting property of the oxadiazole units.

Together with poly(9-vinylcarbazole) (PVK, electron donating), OXD-7 (electron withdrawing) is the most widely used hybrid-type host due to its good solubility and film morphology by the bulky tert-butyl units.

OXD-7 has also been used as an ultraviolet emitter, with MoO3 as hole injection and buffer material showing relatively high external quantum efficiency [1].

 

Device structure                                            ITO/PEDOT:PSS/PVK:OXD-7:TPD:(Et-Cvz-PhQ)2Ir(pic)*/OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm) [6]
Colour Red   red
Max. Current Efficiency 17.5 cd/A 
Max. EQE 10.6%
Max. Power Efficiency 6.42 lm W1

Device structure

ITO/PEDOT:PSS(40 nm)/mCP:PVK:OXD-7(33:33:22 wt%):
(dfpmpy)2Ir(pic-N-O):(F4PPQ)2Ir(pic-N-O):
(EO2- Cz-PhQ)2Ir(acac)*(12:0.25:0.15 wt%)
(50-60 nm)/TmPyPB(20 nm)/LiF(1 nm)/Al(150 nm) [7]                            
Colour   White   white
Max. EQE       

11.45%                                                                                                   

Max. Current Efficiency             23.04 cd/A                                                     
Max. Power Efficiency 8.04 lm W1
Device structure ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [8]                      
Colour White  white
Max. EQE 17.5%
Max. Power Efficiency 45 lm W1
Device structure        ITO/ PEDOT:PSS 1.5 (75 nm)/PVK:OXD-7:complex 5 (100:37:8 w/w) (80 nm)/Ba (4 nm)/Al (100 nm) [9]
Colour Blue  blue
Max. EQE 8.7%
Max. Current Efficiency      19.1 cd/A
Max. Power Efficiency      6.6 lm W1
Device structure  ITO/PEDOT:PSS/ PVK :OXD-7:Ir(mppy)3 (60:40:4, w/w)/TrOH*/Al [10]
Colour Green green
Max. Luminance 18,050
Max. EQE 6.7%
Max. Current Efficiency 23.4 cd/A
Device structure        ITO/MoOx/PVK:OXD-7:FIrpic (70:30:10/B1Mo/Al [11]
Colour Blue  blue
Max. Luminance 42,000
Max. EQE 15.4%
Max. Current Efficiency      30 cd/A
Max. Power Efficiency      12.5 lm W1
Device structure        ITO/PEDOT:PSS/PVK:OXD-7:FIrpic (60:40:10 w/w, 70 nm)/SPDP* (15 nm) LiF (1 nm)/Al (100 nm) [12]
Colour Blue  blue
Max. EQE 19.6%
Max. Current Efficiency      33.6 cd/A
Max. Power Efficiency      10.6 lm W1

*For chemical structure information, please refer to the cited references.

 

Characterisation

1H NMR oxd-7
11H NMR of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) in CDCl3.

 

hplc trace of oxd-7
HPLC trace of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7).

 

Literature and Reviews

  1. Highly efficient ultraviolet organic light-emitting diodes and interface study using impedance spectroscopy, Q. Zhang et al., Electron Optics, 126 (18), 1595-1597 (2015).
  2. Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light-Emitting Diodes, K. Yook et al., Adv. Mater., 26, 4218–4233 (2014).
  3. High power efficiency solution-processed double-layer blue phosphorescent organic light-emitting diode by controlling charge transport at the emissive layer and heterojunction, K. Yeoh et al., Phys. Status Solidi RRL 7, No. 6, 421–424 (2013) / DOI 10.1002/pssr.201307089.
  4. Highly efficient solution processed blue organic electrophosphorescence with 14lm∕W luminous efficacy, M. K. Mathai et al., Appl. Phys. Lett. 88, 243512 (2006); http://dx.doi.org/10.1063/1.2212060.
  5. Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes, L. Hou et al., Org. Electronics, 11 (8), 1344-1350 (2010), doi:10.1016/j.orgel.2010.05.015.
  6. High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
  7. Single emissive layer white phosphorescent organic light-emitting diodes based on solution-processed iridium complexes, W. Cho et al., Dyes and Pigments, 108, 115-120 (2014), doi:10.1016/j.dyepig.2014.04.033.
  8. Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
  9. Cyclometalated Ir(III) Complexes for High-Efficiency SolutionProcessable Blue PhOLEDs, V. Kozhevnikov et al., Chem. Mater., 25, 2352−2358 (2013); dx.doi.org/10.1021/cm4010773.
  10. Efficient phosphorescent polymer light-emitting devices using a conjugated starburst macromolecule as a cathode interlayer, X. Zhang et al., RSC Adv., 6, 10326 (2016); DOI: 10.1039/c5ra19156d.
  11. Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes, M. Tountas et al., Adv. Funct. Mater. 2016; DOI: 10.1002/adfm.201504832.
  12. New sulfone-based electron-transport materials with high triplet energy for highly efficient blue phosphorescent organic light-emitting diodes, S. Jeon et al., J. Mater. Chem. C, 2, 10129-10137 (2014); DOI: 10.1039/C4TC01474J.