OXD-7

Order Code: M451
MSDS sheet

Price

(excluding Taxes)

£89.00


General Information

CAS number 138372-67-5
Chemical formula C30H30N4O2
Molecular weight 478.58 g/mol
Absorption λmax 292 (THF)
Fluorescence λem 347 nm (THF)
HOMO/LUMO HOMO = 6.5 eV, LUMO = 3.0 eV
Synonyms 1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene
1,3-Bis[5-(4-tert-butylphenyl)-2-[1,3,4]oxadiazolyl]benzene
Classification / Family

Electron-injection materials, Electron transporting materials, Phosphorescent host materials, Organic Light-Emitting Diodes, Organic electronics

 

Product Details

Purity  Sublimed* > 99.4%
Melting point  241 °C (lit.)
Colour White powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals only goes through two physical stages from a solid state to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

oxd-7 chemical structure
Chemical Structure of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7); CAS No. 138372-67-5; Chemical Formula C30H30N4O2.

 

Applications

1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) is a well known electron transporting material due to the electron accepting property of the oxadiazole units.

Together with poly(9-vinylcarbazole) (PVK, electron donating), OXD-7 (electron withdrawing) is the most widely used hybrid type host for its good solubility and film morphology by the bulky tert-butyl units.

OXD-7 has also been used as ultraviolet emitter with MoO3 as hole injection and buffer material showing relatively high external quantum efficiency [1].

 

Device structure                                            ITO/PEDOT:PSS/PVK:OXD-7:TPD:(Et-Cvz-PhQ)2Ir(pic)*/OXD-7 (20 nm)/Ba (3 nm)/Al (100 nm) [6]
Colour Red   red
Max. Current Efficiency 17.5 cd/A 
Max. EQE 10.6%
Max. Power Efficiency 6.42 lm W1

Device structure

ITO/PEDOT:PSS(40 nm)/mCP:PVK:OXD-7(33:33:22 wt%):
(dfpmpy)2Ir(pic-N-O):(F4PPQ)2Ir(pic-N-O):
(EO2- Cz-PhQ)2Ir(acac)*(12:0.25:0.15 wt%)
(50-60 nm)/TmPyPB(20 nm)/LiF(1 nm)/Al(150 nm) [7]                            
Colour   White   white
Max. EQE       

11.45%                                                                                                   

Max. Current Efficiency             23.04 cd/A                                                     
Max. Power Efficiency 8.04 lm W1
Device structure ITO/PEDOT:PSS/NPB/mCP/FPt*(1.5 nm)/OXD-7/CsF/Al [8]                      
Colour White  white
Max. EQE 17.5%
Max. Power Efficiency 45 lm W1
Device structure        ITO/ PEDOT:PSS 1.5 (75 nm)/PVK:OXD-7:complex 5 (100:37:8 w/w) (80 nm)/Ba (4 nm)/Al (100 nm) [9]
Colour Blue  blue
Max. EQE 8.7%
Max. Current Efficiency      19.1 cd/A
Max. Power Efficiency      6.6 lm W1
Device structure  ITO/PEDOT:PSS/ PVK :OXD-7:Ir(mppy)3 (60:40:4, w/w)/TrOH*/Al [10]
Colour Green green
Max. Luminance 18,050
Max. EQE 6.7%
Max. Current Efficiency 23.4 cd/A
Device structure        ITO/MoOx/PVK:OXD-7:FIrpic (70:30:10/B1Mo/Al [11]
Colour Blue  blue
Max. Luminance 42,000
Max. EQE 15.4%
Max. Current Efficiency      30 cd/A
Max. Power Efficiency      12.5 lm W1
Device structure        ITO/PEDOT:PSS/PVK:OXD-7:FIrpic (60:40:10 w/w, 70 nm)/SPDP* (15 nm) LiF (1 nm)/Al (100 nm) [12]
Colour Blue  blue
Max. EQE 19.6%
Max. Current Efficiency      33.6 cd/A
Max. Power Efficiency      10.6 lm W1

*For chemical structure informations please refer to the cited references.

 

Characterisation

1H NMR oxd-7
11H NMR of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7) in CDCl3.

 

hplc trace of oxd-7
HPLC trace of 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (OXD-7).

 

Literature and Reviews

  1. Highly efficient ultraviolet organic light-emitting diodes and interface study using impedance spectroscopy, Q. Zhang et al., Electron Optics, 126 (18), 1595-1597 (2015).
  2. Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light-Emitting Diodes, K. Yook et al., Adv. Mater., 26, 4218–4233 (2014).
  3. High power efficiency solution-processed double-layer blue phosphorescent organic light-emitting diode by controlling charge transport at the emissive layer and heterojunction, K. Yeoh et al., Phys. Status Solidi RRL 7, No. 6, 421–424 (2013) / DOI 10.1002/pssr.201307089.
  4. Highly efficient solution processed blue organic electrophosphorescence with 14lm∕W luminous efficacy, M. K. Mathai et al., Appl. Phys. Lett. 88, 243512 (2006); http://dx.doi.org/10.1063/1.2212060.
  5. Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes, L. Hou et al., Org. Electronics, 11 (8), 1344-1350 (2010), doi:10.1016/j.orgel.2010.05.015.
  6. High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
  7. Single emissive layer white phosphorescent organic light-emitting diodes based on solution-processed iridium complexes, W. Cho et al., Dyes and Pigments, 108, 115-120 (2014), doi:10.1016/j.dyepig.2014.04.033.
  8. Efficient organic light-emitting devices with platinum-complex emissive layer, X. Yang et al., Appl. Phys. Lett., 98, 033302 (2011); doi: 10.1063/1.3541447.
  9. Cyclometalated Ir(III) Complexes for High-Efficiency SolutionProcessable Blue PhOLEDs, V. Kozhevnikov et al., Chem. Mater., 25, 2352−2358 (2013); dx.doi.org/10.1021/cm4010773.
  10. Efficient phosphorescent polymer light-emitting devices using a conjugated starburst macromolecule as a cathode interlayer, X. Zhang et al., RSC Adv., 6, 10326 (2016); DOI: 10.1039/c5ra19156d.
  11. Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High Efficiency Fluorescent and Phosphorescent Organic Light Emitting Diodes, M. Tountas et al., Adv. Funct. Mater. 2016; DOI: 10.1002/adfm.201504832.
  12. New sulfone-based electron-transport materials with high triplet energy for highly efficient blue phosphorescent organic light-emitting diodes, S. Jeon et al., J. Mater. Chem. C, 2, 10129-10137 (2014); DOI: 10.1039/C4TC01474J.