Ir(piq)3

Order Code: M642
MSDS sheet

Price

(excluding Taxes)

£195.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99% purity) M641 100 mg £196
Unsublimed (>99% purity) M642 250 mg
£195
Sublimed (>99% purity) M641 250 mg £359
Unsublimed (>99% purity) M642 500 mg £333

General Information

CAS number 435293-93-9
Chemical formula C45H30IrN3
Molecular weight 804.96 g/mol
Absorption λmax 324 nm in THF
Fluorescence λem  615 nm in THF
HOMO/LUMO HOMO 5.1 eV, LUMO 3.1 eV [1]
Synonyms Tris(1-phenylisoquinoline)iridium(III), Tris[1-phenylisoquinoline-C2,N]iridium(III), Tris[1-phenylisoquinolinato-C2,N]iridium(III)
Classification / Family Organometallic iridium complex, Red emitter, Phosphorescence dopant OLEDs, Sublimed materials

 

Product Details

Purity

Sublimed* >99.0%

Unsublimed >99.0%

Melting point 454 °C
Colour Dark-red powder

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemcial structrure of Ir(piq)3
 
Tris(1-phenylisoquinoline)iridium(III), Ir(piq)CAS No. 94928-86-6; Chemical Formula C45H30IrN3

 

Applications

Tris(1-phenylisoquinoline)iridium(III), Ir(piq)3 is a deep red phosphorescent dopant material.

Quinoline/isoquinoline-based compounds have received considerable attention in optoelectronic materials due to their high electron affinities. With greater π-electronic conjugation in isoquinoline ring, the energy of the lowest unoccupied molecular orbital (LUMO) is significantly lowered, and thus the energy gap is reduced. 

Ir(piq)3, together with Ir(piq)2acac, are the ones that have been most studied in isoquinoline iridium complex family. The 'piq' unit of the ligand part can partially suppress the triplet-triplet annihilation and show short phosphorescent lifetimes.

 

Device structure                ITO/NPD* (40 nm)/9%-Ir(piq)3:CBP (20 nm)/BPhen (50 nm)/KF (1 nm)/Al [2]
Colour Red  red
Max. Luminance  11,000 cd/m2
Max EQE  10.3%
Max. Power Efficiency  8.0 lm W1

 

Device structure              ITO/PEDOT:PSS/BlueJ*:PVK:Ir(pbpp)3*:Ir(piq)3/BCP/Li:Al [3]                      
Colour White  white
Max. Luminance 905 cd/m2                                                                                                                                            
Max EQE 3.2%
Max. Current Efficiency 12.52 cd/A

 

Device structure       ITO/NPB (40 nm)/Bebq2:1 wt% Ir(piq)3 (30 nm)/Bebq2 (20 nm)/LiF (0.5 nm)/Al (100 nm)[6]
Colour Red  red
Max. Current Efficiency 12.71 cd/A
Max. Power Efficiency  16.02 lm W1

 

Device structure   ITO/TAPC (40 nm)/TCTA:Ir(piq)3 2 wt % (1 nm)/TCTA 46 wt %:BP4mPy 46 wt %: FIrpic 8 wt % (28 nm)/BP4mPy:Ir(piq)3 3 wt % (1 nm)/BP4mPy (40 nm)/LiF (0.8 nm)/Al (150 nm) [7]
Colour White  white
Max. Luminance  19,007 cd/m2
Max EQE 11.3%
Max. Current Efficiency 15.6 cd/A
Max. Power Efficiency 16.3 lm W1

 

Device structure ITO/TAPC (40 nm)/ TCTA 46 wt %:BP4mPy 46 wt %:Ir(piq)3 8 wt % (30 nm)/ BP4mPy (40 nm)/LiF (0.8 nm)/Al (150 nm) [7]
Colour Red  red
Max. Luminance  14,879 cd/m2
Max EQE  8.8%
Max. Current Efficiency 5.6 cd/A
Max. Power Efficiency 5.4 lm W1

 

Device structure   ITO/MeO-TPD: F4-TCNQ (100 nm, 4 %)/NPB (15 nm)/TCTA (5 nm)/TCTA: Ir (ppy)3 : Ir(piq)3 (25 nm, 1:9:0.8 %)/MADN: DSA-ph (20 nm, 1 %)/Bepp2 (250 nm)/LiF (1 nm)/Al (200 nm) [8]
Colour White  white
Max. Current Efficiency 8.4 cd/A
Max. Power Efficiency 13.1 lm W1
Max. CRI  90

 

Device structure ITO(150 nm)/NPB(70 nm)/mCP:Firpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5%(30 nm)/TPBi(30 nm)/Liq(2 nm)/Al(120 nm) [9]
Colour White  white
Max. Luminance  37,810 cd/m2
Current Efficiency@1000 

cd/m2

48.10 cd/A

 

Device structure ITO/PEDOT:PSS (40 nm)/NPB (15 nm)/ TCTA: 4 wt.% Ir(piq)3 (3.5 nm)/TCTA: 4 wt.% Ir(bt)2(acac) (4 nm)/TCTA: 25 wt.% TmPyPb*: 2 wt. % 4P-NPD* (7 nm)/TmPyPb (4 nm)/TmPyPb: 5 wt.% Ir(ppy)2(acac) (3 nm)/TmPyPb (15 nm)/TmPyPb: 4 wt.% Cs2CO3 (35 nm)/ Cs2CO3/Al [10]
Colour White  white
EQE@1000 cd/m2 14.2%
Current Efficiency@1000 

cd/m2

26 cd/A
Power Efficiency@1000 cd/m2 21.9 lm W1

*For chemical structure informations please refer to the cited references

Characterisations

 nmr-hplc-irpiq3

HPLC trace of tris(1-phenylisoquinoline)iridium , Ir(piq)3

Literature and Reviews

  1. Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host, T. J. Park et al., Appl. Phys. Lett., 92, 113308 (2008); doi: 10.1063/1.2896641.
  2. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, A. Tsuboyama et al., J. Am. Chem. Soc., 125, 12971-12979 (2003). DOI: 10.1021/ja034732d.
  3. White-Light-Emitting Diodes Based on Iridium Complexes via Efficient Energy Transfer from a Conjugated Polymer, T-H. Kim et al., Adv. Funct. Mater., 16, 611–617 (2006). DOI: 10.1002/adfm.200500621.
  4. Efficient multiple triplet quantum well structures in organic light-emitting devices, T. J. Park et al., Appl. Phys. Lett., 95, 103303 (2009); doi: 10.1063/1.3224190.
  5. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer, J. W. Kim et al., Appl. Phys. Lett., 117, 245503 (2015); doi: 10.1063/1.4923048.
  6. Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology, W. S. Jeon et al., J. Info. Display, 10 (2), 87-91, (2009).
  7. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host, C-H. Chang et al., Jpn. J. Appl. Phys. 55, 03CD02 (2016); http://doi.org/10.7567/JJAP.55.03CD02.
  8. Very-High Color Rendering Index Hybrid White Organic Light-Emitting Diodes with Double Emitting Nanolayers, B. Liu et al., Nano-Micro Lett., 6(4):335–339 (2014); DOI 10.1007/s40820-014-0006-4.
  9. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer, J. Kim et al., Sci Rep., 4: 7009 (2014); doi: 10.1038/srep07009.
  10. A white organic light-emitting diode with ultra-high color rendering index, high efficiency, and extremely low efficiency roll-off, N. Sun et al., Appl. Phys. Lett. 105, 013303 (2014); http://dx.doi.org/10.1063/1.4890217.