Ir(ppy)2(acac)

Order Code: M662
MSDS sheet

Price

(excluding Taxes)

£151.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99.8% purity) M661 100 mg £159
Unsublimed (>99.7% purity) M662 250 mg
£151
Sublimed (>99.8% purity) M661 250 mg £265
Unsublimed (>99.7% purity) M662 500 mg £263

General Information

CAS number 337526-85-9
Chemical formula C27H23IrN2O2
Molecular weight 599.70 g/mol
Absorption λmax 259 in THF
Fluorescence λem 314 in THF
HOMO/LUMO HOMO 5.6 eV, LUMO 3.0 eV [1]
Synonyms (ppy)2Ir(acac), Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), Bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O2,O4)iridium(III)
Classification / Family Organometallic complex, Green emitter, phosphorescence dopant OLEDs, OLED and PLED materials, Sublimed materials

Product Details

Purity

Sublimed* >99.8%

Unsublimed >99.7%

Melting point 349-356 °C
Colour Yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals that only go through two physical stages from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

Chemical Structure

chemical structure of ir(ppy)2(acac)
Chemical Structure of Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), Ir(ppy)2(acac) CAS No. 337526-85-9; Chemical Formula C27H23IrN2O2.

 

Applications

Like Ir(ppy)3, bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), or Ir(ppy)2(acac), is one of the most studied OLED materials due to its very high quantum yields. When doped into 3,5-Diphenyl-4-(1-naphthyl)-1H-1,2,4-triazole (TAZ), very high external quantum efficiencies of (19.06 ± 1.0%) and luminous power efficiency of 60±5 lm/W were achieved.[1] That was attributed to the nearly 100% internal phosphorescence efficiency of Ir(ppy)2(acac) coupled with balanced hole and electron injection, and triplet exciton confinement within the light-emitting layer.

Ir(ppy)2(acac) demonstrated higher external quantum efficiency when compared with Ir(ppy)3. It was suggested that Ir(ppy)2(acac) molecules preferentially align such that their transition dipole moment is parallel to the substrate whereas the orientation of Ir(ppy)3 molecules is nearly isotropic.[2]

 

Device structure  ITO/MO3 (1 nm)/CBP (35 nm)/8 wt% Ir(ppy)2(acac):CBP/TPBi (65 nm)/LiF/Al (100 nm) [3]
Colour Green  green
EQE@100  cd/m2 23.4
Current Efficiency@100 

cd/m2

81 cd/A
Power Efficiency@100 

cd/m2

78.0 lm W1
Device structure                                            Cl-ITO*/CBP (35 nm)/CBP:Ir(ppy)2(acac) (15 nm, 8 wt%)/TPBi (65 nm)/LiF (1 nm)/Al (100 nm) [4]
Colour Green  green
EQE@100  cd/m2 29.1
Current Efficiency@100 

cd/m2

93 cd/A
Power Efficiency@100 

cd/m2

97 lm W1
Device structure                                            ITO (70 nm)/TAPC (30 nm)/TCTA (10 nm)/TCTA:B3PYMPM:Ir(ppy)2(acac) (30 nm, 1:1: 8 wt%)/B3PYMPM (40 nm)/ LiF (0.7 nm)/ Al (100 nm) [6]
Colour Green  green
Turn on Voltage            2.4 V
EQE@100  cd/m2 29.1
Power Efficiency@100  cd/m2 124.0 lm W1
Device structure ITO/PEDOT:PSS/α-NPD (20 nm)/TCTA (5 nm)/T2T*:(PPy)2Ir(acac)(9:1 wt%) (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (100 nm) [7]
Colour Green  green
Max. Luminance 85,000 cd/m2
Max. Current Efficiency 54 cd/A
Max. EQE     17.4%
Max. Power Efficiency 48 lm W−1 
Device structure ITO/PEDOT:PSS (40 nm)/NPB (15 nm)/ TCTA: 4 wt.% Ir(piq)3 (3.5 nm)/TCTA: 4 wt.% Ir(bt)2(acac) (4 nm)/TCTA: 25 wt.% TmPyPb*: 2 wt. % 4P-NPD* (7 nm)/TmPyPb (4 nm)/TmPyPb: 5 wt.% Ir(ppy)2(acac) (3 nm)/TmPyPb (15 nm)/TmPyPb: 4 wt.% Cs2CO3 (35 nm)/ Cs2CO3/Al [8]
Colour White  white
EQE@1000 cd/m2 14.2%
Current Efficiency@1000 

cd/m2

26 cd/A
Power Efficiency@1000 cd/m2 21.9 lm W1
Device structure  ITO/MoO3(1nm)/CBP(20nm)/CBP: Ir(piq)2(acac) (3 wt.%,4 nm)/CBP: Ir(DMP)3(5 wt.%,4 nm)/CBP: Ir(ppy)2(acac)(7 wt.%,5 nm)/CBP(3 nm)/Bepp2:BCzVBi(50wt.%,40nm)/Bepp2(20nm)/LiF(1nm)/Al(100nm) [9]
Colour White  white
Max. Current Efficiency 26.4 cd/A
Max. Power Efficiency 24.8 lm W1
Device structure  Glass/PEDOT:PSS (100 nm)/TAPC (30 nm)/CBP:8 wt% Ir(ppy)2(acac) (20 nm)/B3PYMPM (25 nm)/B3PYMPM:Rb2CO3 (45 nm)/Al(150 nm) [10] ITO FREE
Colour Green  green
Max. EQE 64.5%
Max. Power Efficiency 283.4 lm W1
Device structure  ITO/PEDOT:PSS/TCTA (25 nm)//TCTA:8 wt% Ir(ppy)2(acac) (10 nm)/TPBi (150  nm)/LiF (10 nm)/Al (150 nm) [11]
Colour Green  green
Max. EQE 23.7%
Max. Current Efficiency 88 cd/A
Max. Power Efficiency 67.5 lm W1

*For chemical structure information please refer to the cited references.

Characterisation

hplc ir9ppy)2acac
HPLC trace of Bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III), Ir(ppy)2(acac).

Literature and Reviews

  1. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, C. Adachi et al., J. Appl. Phys. 90, 5048 (2001); http://dx.doi.org/10.1063/1.1409582.
  2. Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes, P. Liehm et al., Appl. Phys. Lett. 101, 253304 (2012); http://dx.doi.org/10.1063/1.4773188.
  3. Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2, Z. B. Wang et al., Appl. Phys. Lett. 98, 073310 (2011); doi: 10.1063/1.3532844 .
  4. Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility,
    M. G. Helander et al., Science, 332, 944-947 (2011); DOI: 10.1126/science.1202992.
  5. Low Roll-Off and High Efficiency Orange Organic Light Emitting Diodes with Controlled Co-Doping of Green and Red Phosphorescent Dopants in an Exciplex Forming CoHost, S. Lee et al., Adv. Funct. Mater., 23, 4105–4110 (2013); DOI: 10.1002/adfm.201300187.
  6. Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency, Y-S. Park et al., Adv. Funct. Mater., 23, 4914–4920 (2013); DOI: 10.1002/adfm.201300547.
  7. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,H-Fan Chen et al., J. Mater. Chem., 19, 8112–8118 (2009). 
  8. A white organic light-emitting diode with ultra-high color rendering index, high efficiency, and extremely low efficiency roll-off, N. Sun et al., Appl. Phys. Lett. 105, 013303 (2014); http://dx.doi.org/10.1063/1.4890217.
  9. A multi-zoned white organic light-emitting diode with high CRI and low color temperature,  T. Zhang et al., Sci. Reports, 6:20517; DOI: 10.1038/srep20517.
  10. Achieving Above 60% External Quantum Effi ciency in Organic Light-Emitting Devices Using ITO-Free Low-Index Transparent Electrode and Emitters with Preferential Horizontal Emitting Dipoles, C-Y. Lu et al., Adv. Funct. Mater. 2016; DOI: 10.1002/adfm.201505312.
  11. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures, M. Zhang et al., Chin. Phys. Lett., 32, 097803 (2015).