Order Code: M2103A1
Price excludes taxes
Not in stock (price excludes taxes)
Price: Loading...


 Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2103A1 250 mg £249.00
Sublimed (>99.0% purity) M2103A1 500 mg £423.00
Sublimed (>99.0% purity) M2103A1 1 g £738.00

General Information

CAS number 1201800-83-0
Chemical formula C39H27N3
Molecular weight 537.65 g/mol
Absorption λmax 270 nm in DCM
Fluorescene λem 380 nm in DCM
HOMO/LUMO HOMO = 6.5 eV, LUMO = 3.0 eV; T1 = 2.80 eV [1]
Synonyms 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine
Classification / Family Triazine, TADF blue emitter materials, TADF host materials, Phosphorescent organic light-emitting devices (PHOLEDs), Sublimed materials

Product Details

Purity  Sublimed >99.0% (HPLC)
Melting point TGA: >300 °C (0.5% weight loss)
Appearance Off-white powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.


chemical structure T2t, 2,4,6-tris(biphenyl-3-yl)-1,3, 5-triazine
Chemical structure of 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T).



2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T) is a family member of triazine.  It has one electron-withdrawing triazine core and three electron-rich biphenyl groups. It has been widely used as a host material for phosphorescent OLEDs and electron transport layer material (ETL) for TADF-OLEDs.

Due to its electron-deficient nature, T2T and its derivatives are also used as acceptor materials to form exciplexes in blue-emission TADF devices.


Device structure  ITO/PEDOT:PSS/a-NPD (20 nm)/TCTA (5 nm)/(PPy)2Ir(acac):T2T (25 nm)/TPBi (50 nm)/LiF (0.5 nm)/Al (100 nm) [2]
Colour Green green
Max. EQE 17.5%
Max. Power Efficiency 65.2 Im/W
Device structure  ITO/MoO3 (3 nm)/TAPC (25 nm)/TAPC:T2T (15 nm)/T2T (5 nm)/Bphen (30 nm)/LiF (1 nm)/Al (100 nm) [3]
Colour Green green
Max. Current Efficiency 40.4 cd/A
Max. EQE 11.6%
Max. Power Efficiency 42.2 Im/W
Device structure  ITO/TAPC (35 nm)/1 wt%-TBRb:25 wt%-PXZ-TRX:mCBP (30 nm)/T2T (10 nm)/Alq3 (55 nm)/LiF (0.8 nm)/Al (100 nm) [4]
Colour Yellow  yellow
Max. Current Efficiency 60 cd/A
Max. EQE 18.0%
Max. Power Efficiency 58 Im/W
Device structure  ITO (100 nm)/HAT-CN (10 nm)/TAPC (30 nm)/0.65mol%-TBRb:6.3mol%-4CzIPN-Me:mCBP (30 nm)/T2T (10 nm)/Alq3 (55 nm)/LiF (0.8 nm)/Al (100 nm) [5]
Colour Green green
Max. Current Efficiency 73 cd/A
Max. EQE 21%


Literature and Reviews

  1. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers, D. Tsang et al., Sci. Rep., 6:22463 (2016); DOI: 10.1038/srep22463.
  2. 1,3,5-Triazine derivatives as new electron transport–type host materials for
    highly efficient green phosphorescent OLEDs, H-F. Chen et al., J. Mater. Chem., 19, 8112–8118 (2009); DOI: 10.1039/b913423a.
  3. Thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitter with high efficiency and low roll-off, T. Lin et al., Org. Electronics, 38, 69-73 (2016); DIO: 10.1016/j.orgel.2016.08.001.
  4. High-efficiency organic light-emitting diodes with fluorescent emitters, H. Nakanotani et al., Nat. Commun., 5:4016 (2014); DOI: 10.1038/ncomms5016.
  5. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs, T. Furukawa1 et al., Sci. Rep., 5:8429 (2015) DOI: 10.1038/srep08429.