FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.

Y6, BTP-4F

Product Code M2200A1
Price $208.00 ex. VAT

Y6, non-fullerene acceptor molecule for OPVs

High purity (>99%) BTP-4F for efficient NFA solar cells

New low prices on all non-fullerene acceptors for organic solar cells with additional savings for large quantities. Order today.

Y6 is a popular non-fullerene acceptor (NFA) molecule. The discovery of ITIC and the subsequent boom in the use of NFAs in organic photovoltaic solar cells (OPVs) has led to rapid improvements in device power conversion efficiencies (PCEs). The development of new NFA molecules like Y6 has continued this exciting trend. Using Y6, considerable jumps in solar cell performance have been achieved.

Also known BTP-4F, Y6 is a highly conjugated electron deficient organic semiconductor with an A-DAD-A structure. The Y6 molecule is composed of a fused thienothienopyrrolo-thienothienoindole (TTP-TTI) core base and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC) end units. These 2FIC end units are believed to promote intermolecular interactions and enhance optical absorption; the absorption spectrum of Y6 has a maximum at around 810 nm and extends to 1100 nm. This means that Y6 and its polymer blends have the potential to absorb light across the entire visible and near infra-red spectrum.

The benzothiadiazole core of Y6 allows for the creation of solar cells using the polymer PBDB-T-2F (PM6) as an electron donor. Impressive power conversion efficiencies of up to 15.7% have been demonstrated in optimised single-junction solar cells with both conventional and inverted architectures using Y6 and PM6.

Device structure: ITO/PEDOT:PSS/PM6:Y6/PDINO/Al.

Thickness (nm) VOC (V) JSC (mA cm-2) FF (%) PCE (%)
150 0.86 25.3 74.8 15.7

We supply high purity (>99%) Y6 to institutions around the world. Quantities from 50 mg to 5 g are available to buy online (please contact us for larger orders) and eligible orders ship free.

Y6 (BTP-4F) from Ossila was used in the high-impact paper (IF 29.37), Triplet-Charge Annihilation in a Small Molecule Donor: Acceptor Blend as a Major Loss Mechanism in Organic Photovoltaics, J. Marin-Beloqui et al., Adv. Energy Mater., 2100539 (2021); DOI: 10.1002/aenm.202100539.

Characterisation (1H NMR)

1H NMR of Y6-BTP-4F in CDCl3
1H-NMR spectrum of Y6 (BTP-4F) in CDCl3

General Information

Purity >99% (1H NMR)
Full name 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile
Synonyms TTPTTI-4F, BTPTT-4F, BTP-4F, Y6F, BTP-4F-8
Chemical formula C82H86F4N8O2S5
CAS number 2304444-49-1
Molecular weight 1451.93 g/mol
HOMO / LUMO HOMO = -5.65 eV, LUMO = -4.10 eV [1]
Classification / Family NFAs, n-type non-fullerene electron acceptors, organic semiconducting materials, low band-gap small molecule, small molecular acceptor, organic photovoltaics, polymer solar cells, NF-PSCs

Chemical Structure

Y6 non-fullerene acceptor structure
Chemical structure of Y6 (BTP-4F)

Y6 vs Y7 for OPVs

The success of the electron-deficient-core-based fused ring design of Y6 has led to the development of other non-fullerene acceptors for solar cells based on the same principle. One such molecule is the chlorinated form of BTP-4F, known as Y7 or BTP-4Cl. Using polymer donor PM6, devices created using BTP-4Cl have achieved a record PCE of 16.5%. This compares to 15.7% with Y6.

The absorption of Y7 is 20 nm redshifted compared to Y6 and its LUMO energy level is 100 meV lower.

Y7, NFA Molecule BTP-4Cl

  • Chlorinated Version of Y6
  • High Purity
  • Low Price

Available From £160.00

MSDS Documentation

Y6 (BTP-4F) MSDSY6 (BTP-4F) MSDS Sheet


Batch Quantity Price
M2200A1 50 mg £160.00
M2200A1 100 mg £280.00
M2200A1 250 mg £560.00
M2200A1 500 mg £960.00
M2200A1 1 g £1600.00
M2200A1 5 g* £7200.00

* Available with a lead time of 4-5 weeks

Literature and Reviews

  1. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core, J. Yuan et al., Joule (2019); doi: 10.1016/j.joule.2019.01.004.
  2. Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials, Y. Zhang et al., Sci. China. Chem., 61 (10), 1328-1337 (2018); doi:10.1007/s11426-018-9260-2.
  3. Achieving over 16% efficiency for single-junction organic solar cells, B. Fan et al., Sci. China Chem., 62, 6 746-752 (2019); doi: 10.1007/s11426-019-9457-5.
  4. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy, Yan T et al., Adv Mater., 31(39):e1902210 (2019); doi: 10.1002/adma.201902210.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top