B4PyPPm


Order Code: M2176A1
Price excludes taxes
Not in stock (price excludes taxes)

Pricing

 Grade Order Code Quantity Price
Sublimed (>99.8% purity) M2176A1 250 mg £266.3
Sublimed (>99.8% purity) M2176A1 500 mg £426.2
Sublimed (>99.8% purity) M2176A1 1 g £681.9

General Information

CAS number 1097652-83-9
Full name 4,6-Bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine, 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-phenylpyrimidine
Chemical formula C42H28N6
Molecular weight 616.71 g/mol
Absorption λmax 254 nm in DCM
Fluorescence n.a.
HOMO/LUMO HOMO = 7.15 eV, LUMO = 3.44 eV [1]; ET1 = 2.72 eV
Synonyms 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-phenylpyrimidine
Classification / Family Pyrimidine derivatives, Highly efficient light-emitting diodes, Organic electronics, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, TADF materials, Sublimed materials.

 

Product Details

Purity Sublimed>99.8% (HPLC)
Melting point 356 °C
Appearance White crystals/powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED Devices page.

 

b4pyppm, 1097652-83-9
Chemical structure of B4PyPPm; CAS No. 1097652-83-9.

 

Applications

B4PyPPM has a 2-phenylpyrimidine skeleton structure with four pyridine pendants. It exhibits superior electron injection properties and an electron mobility that is 10 times higher than those of 3-pyridine derivatives (e.g. B3PyMPM).

Like B4PymPm, B4PyPPM is electron-deficient and used as an electron transport or injection-layer material for OLED devices. Due to its electron-deficient nature, B4PyPPM can also be used with electron-donating materials to form exciplex systems. These are ideal candidates to act as high-performance hosts of both red fluorescent and phosphorescent TADF-OLEDs.

Device structure                ITO (110 nm)/TPDPES*:10 wt% TBPAH (20 nm)/TAPC (30 nm)/CBP:8 wt% Ir(ppy)3 (10 nm)/B4PyPPM (50 nm)/LiF (0.5 nm)/Al (100 nm) [1]
Colour Green green
Power Efficiency @100 cd/cm2 128 lm W1
Current Efficiency @100 cd/cm2 105 cd/A
Device structure                ITO/MoO3 (1 nm)/TAPC (20 nm)/Tris-PCz* (10 nm)/Tris-PCz:B4PyPPM:3 wt% Ir(MDQ)2acac (30 nm)/B4PyPPM (50 nm)/LiF (1 nm)/Al (100 nm) [2]
Colour Red  red
Max. Power Efficiency 37.7 lm W1
Max. Current Efficiency 33.7 cd/A
Max. EQE  20.3%
Device structure                ITO (130 nm)/HATCN (1 nm)/TAPC (50 nm)/CBP:17 wt% Ir(ppy)3 (10 nm)/B4PyPPM (50 nm)/Libpp (1 nm)/Al (80 nm) [3]
Colour Green green
Max. Power Efficiency  125.4 lm W1
Max. Current Efficiency  83.7 cd/A
Max. EQE  23.8%
Device structure                ITO/PPBI (20 nm)/TAPC (20 nm)/TCTA/CBP:20 wt% 26PXZINN* (20 nm)/B4PyPPm (50 nm)/LiF (0.5 nm)/Al (100 nm) [4]
Colour Green green
Max. Power Efficiency  99.0 lm W1
Max. Current Efficiency  75.6 cd/A
Max. EQE  22.2%
Device structure                ITO (100 nm)/HATCN (1 nm)/TAPC (65 nm)/TCTA (5 nm)/20 wt% DACT-II-doped CBP (10 nm)/B4PyPPm (50 nm)/Liq (1 nm)/Al (80 nm) [5]
Colour Green green
Max. Power Efficiency  99.0 lm W1
Max. Current Efficiency  75.6 cd/A
Max. EQE  22.2%
Device structure                ITO (130 nm)/TAPC (35 nm)/TCTA (5 nm)/CBP (5 nm)/CBP doped with 5 wt% 4CzIPN (5 nm)/B4PyPPM (65 nm)/LiF (0.8 nm)/Al (100 nm) [6]
Colour Green green
Max. Power Efficiency  106.9 lm W1
Max. Current Efficiency  83.2 cd/A
Max. EQE  25.7%

*For chemical structure information, please refer to the cited references

 

Literature and Reviews

  1. 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices, H. Sasabe et al., Chem. Commun., 5821–5823 (2008); DOI: 10.1039/b812270a.
  2. High-performance red organic light-emitting devices based on an exciplex system with thermally activated delayed fluorescence characteristic, S. Yuan et al., Org. Electrn., 39, 10-15 (2016); DIO: 10.1016/j.orgel.2016.09.020.
  3. Extremely Low Operating Voltage Green Phosphorescent Organic Light-Emitting Devices, H. Sasabe et al., Adv. Funct. Mater., 23, 5550–5555 (2013); DOI: 10.1002/adfm.201301069.
  4. High Power Efficiency Blue-to-Green Organic Light-Emitting Diodes Using Isonicotinonitrile-Based Fluorescent Emitters, H. Sasabe et al., Chem. Asian J., 12, 648 – 654 (2017); DOI : 10.1002/asia.201601641.
  5. Ultrahigh Power Efficiency Thermally Activated Delayed Fluorescent OLEDs by the Strategic Use of Electron-transport Materials, H. Sasabe et al., Adv. Optical Mater., 6, 1800376 (2018); DOI: 10.1002/adom.201800376.
  6. High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W−1, Y. Seino et al., Adv. Mater., 28, 2638–2643 (2016); DOI: 10.1002/adma.201503782.