B4PymPm


Order Code: M2175A1
Price excludes taxes
Not in stock (price excludes taxes)
Price: Loading...

Pricing

 Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2175A1 250 mg £266.00
Sublimed (>99.0% purity) M2175A1 500 mg £426.00
Sublimed (>99.0% purity) M2175A1 1 g £682.00

 

General Information

CAS number 1030380-51-8
Full name 4,6-Bis(3,5-di(pyridin-4-yl)phenyl)-2-methylpyrimidine, 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-methylpyrimidine
Chemical formula C37H26N6
Molecular weight 554.64 g/mol
Absorption λmax 250 nm in DCM
Fluorescence λmax 410 nm in Film
HOMO/LUMO 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-methylpyrimidine
Classification / Family Pyrimidine derivatives, Highly efficient light-emitting diodes, Organic electronics, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, Sublimed materials.

Product Details

Purity Sublimed >99.0% (HPLC)
Melting point 374 °C (lit.)
Appearance White crystals/powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED Devices page.

 

chemical structure of b4pympm
Chemical structure of B4PymPm; CAS No. 1030380-51-8.

 

Applications

B4PymPm is an isomer to B2PymPm and B3PymPm. It has a 2-methylpyrimidine core structure with four pyridine pendants. It is electron-deficient and can be used in OLEDs and photovoltaics (e.g. perovskite solar cells) as an electron-transporting or hole-blocking layer material.

Due to its intermolecular hydrogen bonding, B4PymPm molecules self-assemble in a horizontal orientation - parallel to the substrate, with a significantly large anisotropy. This self-assembly gives high molecular stacking in films with high π-orbital overlaps, which can significantly enhance charge-carrier mobility and transport.

Device structure                ITO (110 nm)/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/mCP:B4PyMPM:15 wt% FIrpic (20 nm)/B4PyMPM (50 nm)/Liq (0.8 nm)/Al (120 nm) [2]
Colour Blue  blue
Max. Power Efficiency 79.8 lm W1
Max. Current Efficiency 41.3 cd/A
Max. EQE  17.3%
Device structure                ITO (110 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/mCP:50 wt% B4PyMPM:15 wt% FIrpic:0.2 wt% PO-01* (20 nm)/B4PyMPM (50 nm)/Liq (0.8 nm)/Al (120 nm) [2]
Colour White white
Max. Power Efficiency 105.0 lm W1
Max. Current Efficiency 83.6 cd/A
Max. EQE  28.1%
Device structure                ITO (70 nm)/TAPC (75 nm)/TCTA (10 nm)/ TCTA:B4PYMPM:8 wt% Ir(ppy)2tmd (30 nm)/B4PYMPM (50 nm)/LiF (0.7 nm)/Al (100 nm) [3]
Colour Yellow  yellow
Max. Power Efficiency 152.5 lm W1
Max. EQE  30.4%
Device structure                ITO/HAT-CN (5 nm)/TAPC (30 nm)/TCTA (8 nm)/26DCzPPy:PO-01 (4 wt%, 2 nm)/26DCzPPy:B4PyMPM:FIrpic (1:1, 15 wt%, 20 nm)/
B4PyMPM (15 nm)/Bphen:LiH 0.1 wt% (25 nm)/Al (120 nm) [4]
Colour White white
Max. Power Efficiency 95.5 lm W1
Max. Current Efficiency 82.0 cd/A
Max. EQE  28.5%

*For chemical structure information, please refer to the cited references

 

Literature and Reviews

  1. Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters, H, Sasabe et al., Adv. Funct. Mater., 21, 336–342 (2011); DOI: 10.1002/adfm.201001252.
  2. White Organic LED with a Luminous Efficacy Exceeding 100 lm W−1 without Light Out-Coupling Enhancement Techniques, S. Wu et al., Adv. Funct. Mater., 27, 1701314 (2017); DOI: 10.1002/adfm.201701314.
  3. Highly Efficient, Conventional, Fluorescent Organic Light-Emitting Diodes with Extended Lifetime, H. Kim et al., Adv. Mater., 29, 1702159 (2017); DOI: 10.1002/adma.201702159.
  4. High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host, Q. Tian et al., ACS Appl. Mater. Interfaces, 10, 39116−39123 (2018); DOI: 10.1021/acsami.8b17737.
  5. Development of high performance OLEDs for general lighting, H. Sasabe et al., J. Mater. Chem. C, 1, 1699 (2013); DOI: 10.1039/c2tc00584k.