B4PymPm


Order Code: M2175A1
Not in stock

Pricing

 Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2175A1 250 mg £266.00
Sublimed (>99.0% purity) M2175A1 500 mg £426.00
Sublimed (>99.0% purity) M2175A1 1 g £682.00

 

General Information

CAS number 1030380-51-8
Full name 4,6-Bis(3,5-di(pyridin-4-yl)phenyl)-2-methylpyrimidine, 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-methylpyrimidine
Chemical formula C37H26N6
Molecular weight 554.64 g/mol
Absorption λmax 250 nm in DCM
Fluorescence λmax 410 nm in Film
HOMO/LUMO 4,6-Bis(3,5-di-4-pyridinylphenyl)-2-methylpyrimidine
Classification / Family Pyrimidine derivatives, Highly efficient light-emitting diodes, Organic electronics, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, Sublimed materials.

Product Details

Purity Sublimed >99.0% (HPLC)
Melting point 374 °C (lit.)
Appearance White crystals/powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED Devices page.

 

chemical structure of b4pympm
Chemical structure of B4PymPm; CAS No. 1030380-51-8.

 

Applications

B4PymPm is an isomer to B2PymPm and B3PymPm. It has a 2-methylpyrimidine core structure with four pyridine pendants. It is electron-deficient and can be used in OLEDs and photovoltaics (e.g. perovskite solar cells) as an electron-transporting or hole-blocking layer material.

Due to its intermolecular hydrogen bonding, B4PymPm molecules self-assemble in a horizontal orientation - parallel to the substrate, with a significantly large anisotropy. This self-assembly gives high molecular stacking in films with high π-orbital overlaps, which can significantly enhance charge-carrier mobility and transport.

Device structure                ITO (110 nm)/HAT-CN (10 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/mCP:B4PyMPM:15 wt% FIrpic (20 nm)/B4PyMPM (50 nm)/Liq (0.8 nm)/Al (120 nm) [2]
Colour Blue  blue
Max. Power Efficiency 79.8 lm W1
Max. Current Efficiency 41.3 cd/A
Max. EQE  17.3%
Device structure                ITO (110 nm)/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/mCP:50 wt% B4PyMPM:15 wt% FIrpic:0.2 wt% PO-01* (20 nm)/B4PyMPM (50 nm)/Liq (0.8 nm)/Al (120 nm) [2]
Colour White white
Max. Power Efficiency 105.0 lm W1
Max. Current Efficiency 83.6 cd/A
Max. EQE  28.1%
Device structure                ITO (70 nm)/TAPC (75 nm)/TCTA (10 nm)/ TCTA:B4PYMPM:8 wt% Ir(ppy)2tmd (30 nm)/B4PYMPM (50 nm)/LiF (0.7 nm)/Al (100 nm) [3]
Colour Yellow  yellow
Max. Power Efficiency 152.5 lm W1
Max. EQE  30.4%
Device structure                ITO/HAT-CN (5 nm)/TAPC (30 nm)/TCTA (8 nm)/26DCzPPy:PO-01 (4 wt%, 2 nm)/26DCzPPy:B4PyMPM:FIrpic (1:1, 15 wt%, 20 nm)/
B4PyMPM (15 nm)/Bphen:LiH 0.1 wt% (25 nm)/Al (120 nm) [4]
Colour White white
Max. Power Efficiency 95.5 lm W1
Max. Current Efficiency 82.0 cd/A
Max. EQE  28.5%

*For chemical structure information, please refer to the cited references

 

Literature and Reviews

  1. Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters, H, Sasabe et al., Adv. Funct. Mater., 21, 336–342 (2011); DOI: 10.1002/adfm.201001252.
  2. White Organic LED with a Luminous Efficacy Exceeding 100 lm W−1 without Light Out-Coupling Enhancement Techniques, S. Wu et al., Adv. Funct. Mater., 27, 1701314 (2017); DOI: 10.1002/adfm.201701314.
  3. Highly Efficient, Conventional, Fluorescent Organic Light-Emitting Diodes with Extended Lifetime, H. Kim et al., Adv. Mater., 29, 1702159 (2017); DOI: 10.1002/adma.201702159.
  4. High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host, Q. Tian et al., ACS Appl. Mater. Interfaces, 10, 39116−39123 (2018); DOI: 10.1021/acsami.8b17737.
  5. Development of high performance OLEDs for general lighting, H. Sasabe et al., J. Mater. Chem. C, 1, 1699 (2013); DOI: 10.1039/c2tc00584k.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.