PTAA for Perovskite Applications


Product Code M0511A2
Not in stock
Price [loading]

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), one of the family members of poly(triaryl)amine, is an excellent hole-transporting and electron-blocking semiconducting material due to its electron-rich components. It has been reported that the use of PTAA can substantially improve the open-circuit voltage (VOC) and fill factor (FF) of the cells. Perovskite solar cells based on the use of the hole-transporting materials exhibit a short-circuit current density JSC of 16.5 mA/cm2VOC of 0.997 V and FF of 0.727.[1]

With PTAA as the hole-transport layer (HTL), best results have shown that the incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3, improving the power conversion efficiency of the solar cell to more than 18% under a standard illumination of 100 milliwatts/cm2 [2]. This makes PTAA the best polymer HTL yet for perovskites. Later on, 20.2% was achieved in 2015 with PTAA as the HTL [3].

General Information

CAS number 1333317-99-9
Chemical formula (C21H19N)n
Molecular weight  Please see batch details
HOMO / LUMO HOMO 5.25 eV      LUMO 2.30 eV [6]
Recommended solvents Chlorobenzene, chloroform, dichlorobenzene and toluene
Synonyms

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine
Poly(triarylamine)

    Classification / Family

    Polyamines, Hole-transport layer materials, Electron-blocking layer materials, Organic semiconducting materials, Organic photovoltaics, Polymer solar cells, OLED materials

    Chemical Structure

    Chemical structure of Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine
    Chemical structure of Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine

    Device Structure(s)

    Device structure

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/PTAA/Au [1]

    FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Au [1]

    JSC (mA cm-2) 16.4 6.8
    VOC (V) 0.9 0.68
    FF (%) 61.4 53.8
    PCE 9.0 2.5
    Device structure

    FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [2]

    JSC (mA cm-2) 22.5
    VOC (V) 1.11
    FF (%) 73.2
    PCE 18.4
    Device structure

    FTO/bl-TiO2/mp-TiO2/FAPbI3 (DMSO)/PTAA/Au [3]

    JSC (mA cm-2) 24.7
    VOC (V) 1.06
    FF (%) 77.5
    PCE 20.2

    MSDS Documentation

    PTAA (Perovskite) MSDSPTAA (Perovskite) MSDS sheet

    Pricing

    Batch Quantity Price
    M515/M0511A1 100 mg £192.00
    M0511A1 250 mg £383.00
    M0511A1 500 mg £665.00
    M0511A1 1 g £1130.00

    Batch details

    Batch Mw Mn PDI Stock info
    M512 27,371 13,514 2.02 Discontinued
    M513 28,422 17,437 1.63 Discontinued
    M514 14,000 9,150 1.53 Discontinued
    M515 33,000 12,220 2.7 Discontinued
    M0511A1 103,141 62,891 1.64 Discontinued
    M0511A2 55,000 20,370 2.7 In Stock
    M0511A3 13,000 8,670 1.5 In Stock

    Literature and Reviews

    1. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, J. Heo et al., Nat. Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
    2. Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.
    3. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, W-S. Yang et al., Science, 348 (6240), 1234-1237 (2015). DOI: 10.1126/science.aaa9272.
    4. High-efficient solid-state perovskite solar cells without lithium salt in the hole transport material, NANO 09, 1440001 (2014). DOI: 10.1142/S1793292014400013.
    5. Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, J. Noh et al., Nano Lett., 13, 1764−1769 (2013), dx.doi.org/10.1021/nl400349b.
    6. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays, A. Intaniwet et al., ACS Appl Mater Interfaces. 2(6), 1692-9 (2010). doi: 10.1021/am100220y.
    7. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells, A. Lefrançois et al., Sci Rep. 2015; 5: 7768. doi: 10.1038/srep07768.
    8. Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability, Y. Wang et al., Adv. Funct. Mater., 26, 1375–1381 (2016); DOI: 10.1002/adfm.201504245.

    To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.