In stock (price excludes taxes)
Order Code: M502
MSDS sheet

Luminosyn™ F8T2 is now available featuring:

  • High purity - higher purity means more precise emission and longer life-time for OLED devices - F8T2 is purified via Soxhlet extraction with methanol, hexane and chloroform under an argon atmosphere
  • Good solubility in most of common solvents (toluene, chloroform and chlorobenzene)
  • Larger quantity orders so you can plan your experiments with polymer from the same batch)


 Batch Quantity Price
M502 250 mg £199.8
M502 1 g £679.3
M502 5 g / 10 g* Please enquire

*For 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch information

Batch Mw Mn PDI Stock info
M501 >50,000 <3.0 Out of Stock
M502 136,320 53,866 2.53 In stock

General Information

CAS number 210347-56-1
Chemical formula (C37H44S2)n
Molecular weight  See batch information for details
HOMO / LUMO HOMO = 5.5 eV / LUMO = 3.1 eV [1]
Synonyms PFOT, Poly(9,9-dioctylfluorene-alt-bithiophene), Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene]
Classification / Family Polyfluorenes, Bithiophenes, Heterocyclic five-membered ring, Organic semiconducting materials, PLED green emitter materials, Organic Photovoltaics, Polymer Solar Cells, Light-emitting Diodes, OFET materials
Suggested Solvents Chloroform, chlorobenzene or dichlorobenzene


chemical structure, f8t2, 210347-56-1
Chemical structure and appearance of Poly(9,9-dioctylfluorene-alt-bithiophene), F8T2, CAS No. 210347-56-1.



Poly(9,9-dioctylfluorene-alt-bithiophene), also known as F8T2, is a semiconducting material that is widely used in organic electronics such as organic photovoltaics, polymer light-emitting diodes (PLED) and organic field-effect transistors (OFETs). Comparing with poly-3-hexylthiophene, F8T2 has even higher mobilities of 0.1 cm2/V · s and relatively higher stability against chemical doping by environmental oxygen or residual impurities such as  mobile sulphonic acid in the PEDOT/PSS ink. This enables devices with higher on-off current ratios exceeding 105 and with better operating stability than printed poly-3-hexylthiophene devices[1].

The absorption in the blue region of F8T2 makes it an excellent donor polymer to blend with an acceptor having complementary spectrum or assemble a tandem cell with other low bandgap-conjugated polymers with absorption extended in the red region. 

Device structure
ITO/PEDOT:PSS/TFB/F8T2/Ca  [3]                            
Colour Green  green
Max. Luminance 23,400
Max. Current Efficiency 3.68 cd/A
Max. Power Efficiency 2.9 lm W1  


Literature and Reviews

  1. Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
  2. High-Efficiency Polymer LEDs with Fast Response Times Fabricated via Selection of Electron-Injecting Conjugated Polyelectrolyte Backbone Structure, M. Suh et al., ACS Appl. Mater. Interfaces, (2015), DOI: 10.1021/acsami.5b07862.
  3. On the use and influence of electron-blocking interlayers in polymer light-emitting diodes, R. Jin et al., Phys. Chem. Chem. Phys., 11, 3455-3462 (2009). DOI: 10.1039/B819200F.
  4. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, H. Sirringhaus et al., Science, 290 (5499), 2123-2126 (2000), DOI: 10.1126/science.290.5499.2123.
  5. Organic Light-Emitting Diodes Based on Poly(9,9-dioctylfluorene-co-bithiophene) (F8T2), P. Levermore et al., Adv. Funct. Mater., 19, 950–957 (2009); DOI: 10.1002/adfm.200801260.
  6. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase, H. Sirringhaus et al., Appl. Phys. Lett. 77, 406 (2000); http://dx.doi.org/10.1063/1.126991.
  7. Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, J-H. Huang et al., Org. Electronics, 10, 27–33 (2009), doi:10.1016/j.orgel.2008.09.007.
  8. Hole mobility effect in the efficiency of bilayer heterojunction polymer/C60 photovoltaic cells, A. Macedo et al., Appl. Phys. Lett. 98, 253501 (2011); http://dx.doi.org/10.1063/1.3601476.