TFB

Order Code: M981
MSDS sheet

Price

(excluding Taxes)

£153.00


General Information

CAS number 220797-16-0
Chemical formula (C51H61N)n
Molecular weight  Mw = 40 KDa (PD = 1.75)
Absorption λmax 390 nm (in THF)
Fluorescence λem 295 nm, 435 nm (in THF)
HOMO/LUMO HOMO = 5.3 eV, LUMO = 2.3 eV
Solvents THF, Toluene and Chloroform
Synonyms Poly(9,9-dioctylfluorene-alt-N-(4-n-butylphenyl)-diphenylamine)
Classification / Family Hole transport material (HTL), Hole injection material (HIL), Electron blocking material (EBL), OLEDs, Perovskite solar cells, Organic and printed electronics

Product Details

Purity >99%
Melting point n.a.
Colour Pale yellow powder/fibers

 

Chemical Structure

Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB)
Chemical Structure of Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB); CAS No. 220797-16-0; Chemical Formula (C51H61N)n.

Applications

Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB) is a triarylamine based semiconductor with a band gap of 3 eV (HOMO and LUMO levels of 5.3 and 2.3 eV, respectively) and a relatively high hole mobility of 2 ×10-3 cm2 V-1 s-1.

Due to its low ionisation potential and high hole mobility, TFB serves primarily as hole transport layer (HTL), hole-injection layer (HIL) and electron-blocking layer (EBL) material in organic electronic devices. When built into device as an interface material, TFB as an electron blocking layer will not only reduce the chance of electron leakage, but also reduce the possibility of exciton quenching between the interface of the active layer and charge transport layer (F8BT/MoOx for example).

 

Device structure                      ITO (120 nm)/PDOT:PSS(50 nm)/TFB (5 nm)/PYGTPA* (75 nm)/PEGPF* (10 nm)/Ca (10 nm)/Al (100 nm) [1]
Colour Deep blue dellp blue
Max. luminance          9,242 cd/m2
Max. Current Efficiency 0.85 cd/A
Bias 4.3 V

Device structure                                           

ITO/c-ZnO (50 nm)/F8BT (80 nm)/MoO3 (10 nm)/Au (50 nm) [2]

ITO/c-ZnO (50 nm)/F8BT (80 nm)/TFB (60 nm)/MoO3 (10 nm)/Au (50 nm) [2]

Colour Green green Green green
Max. luminance     9,370 cd/m2 16,460 cd/m2
Max. Current Efficiency 0.34 cd/A 0.93 cd/A
Bias ~ 0.60 V 0.87 V

Device structure                                      

ITO/ZnO/CsPbI3/TFB (60 nm)/MoO3 (5 nm)/Ag (80 nm) [3]

Colour                                  Red red
Max. Luminance 206 cd/m2
Max. EQE 5.7%

*For chemical structure informations please refer to the cited references

 

Literature and Reviews

  1. All-solution-processed multilayer polymer/dendrimer light emitting diodes, M. Auer-Berger et al., Org. Electronics, 35, 164-170 (2016); http://dx.doi.org/10.1016/j.orgel.2016.04.044.
  2. High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation, D. Kabra et al., Adv. Mater., 20, 3447–3452 (2008); DOI: 10.1002/adma.200800202.
  3. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method, G. Li et al., adv. Mater., 28, 3528–3534 (2016); DOI: 10.1002/adma.201600064.
  4. A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes, H. Yan et al., Appl. Phys. Lett., 84, 3873 (2004); doi: 10.1063/1.1737791.
  5. Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes, J-S. Kim et al., Appl. Phys. Lett., 87, 023506 (2005); doi: 10.1063/1.1992658.