Bebq2

Order Code: M741
MSDS sheet

Price

(excluding Taxes)

£119.00


General Information

CAS number 148896-39-3
Chemical formula C26H16BeN2O2
Molecular weight 397.43 g/mol
Absorption λmax 406 nm
Fluorescence λem  440 nm (DCM)
HOMO/LUMO HOMO = 5.5 eV, LUMO = 2.8 eV
Synonyms

Bepq2
Be(bq)2
Bis(10-hydroxybenzo[h]quinolinato)beryllium
Beryllium bisbenzo[h]quinolin-10-olate

Classification / Family Blue emitter, Electron transport layer materials (ETL), Hole-blocking layer materials (HBL);Organic light-emitting diode (OLED), Organic electronics

 

Product Details

Purity Sublimed* >99%
Thermogravimetric Analysis (TGA) 434 °C (5% weight loss)
Differential Scanning Calorimetry (DSC) 364.9 °C
Colour Yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages, from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemical structure of Bebq2
Chemical Structure of Bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2); CAS No. 148896-39-3; Chemical Formula C26H16BeN2O2.

 

Applications

Bis(10-hydroxybenzo[h]quinolinato)beryllium, known as Bebq2, is the brother of Bepp2 in the Beryllium complex family, and is also a blue fluorescence emitter with excellent charge transport ability.

When compared with Alqas an electron transport material, Bebq2 was proven to be superior, even though the ionisation potential and optical band gap of Bebq2 (5.5 eV and 2.7 eV respectively) and Alq3 (5.6 eV and 2.8 eV respectively) are almost the same. The best use of Bebq2 is not as an emitting layer material or a host material (even though it is a widely used host material), but as an electron-transport material [1].

Device structure ITO/DNTPD (40 nm)/Bebq2:Ir(piq)3 (50 nm, 4 wt%)/LiF (0.5 nm)/Al (100 nm) [2]
Colour Red  red
Max. Current Efficiency 9.38 cd/A                  
Max. Power Efficiency 11.72 lm W1  
Device structure ITO/NPB (40 nm)/Bebq2:1 wt% Ir(piq)3 (30 nm)/Bebq2 (20 nm)/LiF (0.5 nm)/Al (100 nm) [3]
Colour Red  red
Max. Current Efficiency 12.71 cd/A                  
Max. Power Efficiency 16.02 lm W1  
Device structure ITO/MeO-TPD: F4-TCNQ (50 nm, 4 wt%)/NPB (20 nm)/MADN:DSAph (25nm, 7 wt%)/Bebq2 (30 nm)/LiF (1 nm)/Al (200 nm) [4]
Colour Blue blue
Max. Luminance 70,645 cd/m2
Max. Current Efficiency 12.7 cd/A  
Max. Power Efficiency 9.1 lm W1  
Device structure Ag (100 nm)/ITO (10 nm)/DNTPD (30 nm)/NPB (44 nm)/Bebq2:3 wt% Ir(mphmq)2(acac) (20 nm)/Bphen (31 nm)/Bphen: 5 wt% Li (10 nm)/HATCN (7 nm)/NPB (63 nm)/Bebq2: 3 wt% Ir(mphmq)2(acac) (20 nm)/Bphen (40 nm)/Liq (1 nm)/Mg:Ag (10:1; 18 nm)/NPB (60 nm) [5]
Colour Red  red
Max. EQE 26.5%
Max. Current Efficiency 95.8 cd/A                  
Device structure

ITO/NPB (40 nm))/AND:3 wt% DPAVBi (45 nm)/Bebq2 (15 nm)/LiF (1.2 nm)/Al (100 nm) [6]

Colour Blue blue
EQE @ 100 cd/m2 8.32%
Current Efficiency @

100 cd/m2

19.2 cd/A 

 

Device structure ITO/PEDOT:PSS (30 nm)/α-NPD (40 nm)/Bebq2:TLEC-025* (1 wt%, 35 nm)/TPBI (40 nm)/LiF (1 nm)/Al (100 nm) [7]
Colour Red  red
EQE @ 100 cd/m2 17.1%              
Power Efficiency @

100 cd/m2

13.6 lm W1  

 

Device structure

ITO/a-NPB:Bebq2:Ir(piq)3 (1 wt.%, 100 nm)/ LiF (0.5 nm)/Al (100 nm) [8]

Colour Red  red
Max. Current Efficiency 9.44 cd/A                  
Max. Purrent Efficiency 10.62 lm W

 

*For chemical structure informations please refer to the cited references

 

Characterisation (TGA and DSC)

TGA, DSC traces of Bebq2
Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) traces of Bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). Click on figure for full-size image.

Literature and Reviews

  1. Influence of the Emission Site on the Running Durability of Organic Electroluminescent Devices, Y. Hamada et al., Jpn. J. Appl. Phys., 34, L824 (1995); http://iopscience.iop.org/1347-4065/34/7A/L824.
  2. Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes, B. Diouf et al., Adv. Mater. Sci.&Eng., 2012, 794674 (2012); doi:10.1155/2012/794674.
  3. Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology, W. S. Jeon et al., J. Info. Display, 10 (2), 87-91 (2009).
  4. Comprehensive Study on the Electron Transport Layer in Blue Flourescent Organic Light-Emitting Diodes, B. Liu et al.,ECS J. Solid Stat. Sci.& Tech., 2 (11) R258-R261 (2013).
  5. High efficiency red top-emitting micro-cavity organic light emitting diodes, M. Park et al., 22, (17), Optics Express, 19919 (2014), DOI:10.1364/OE.22.019919.
  6. High-Efficiency Fluorescent Blue Organic Light-Emitting Device with Balanced Carrier Transport,
    J-H. Lee et al., J. Electrochem., Soc., 154, 7, J226-J228 (2007).
  7. Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes, H. Fukagawa et al.,  Adv. Mater., 24, 5099–5103 (2012); DOI: 10.1002/adma.201202167.