FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M2273A1-100mg
Price $338 ex. VAT

3P-T2T, ETL material for OLED devices

Highly efficient blue as well as green, yellow and red phosphorescent emitter


3P-T2T, 2,4,6-tris(2-(1H-pyrazol-1-yl)phenyl)-1,3,5-triazine, has a structure with an electron deficient triazine core equipped with phenylpyrazole peripherals. Like PO-T2T and 3N-T2T, 3P-T2T is one of the triazine derivatives and is normally used as an electron transport layer (ETL) in OLED devices. 3P-T2T shows a higher electron transport/injection ability than T2T due to the peripheral three electron-withdrawing pyrazolyl moieties.

As an acceptor, together with TCTA as hole transporting donor, 3P-T2T forms exciplex as a highly efficient yellow delayed fluorescent emitter. The exciplex TCTA:3PT2T has high and balanced hole and electron mobilities and large energy-levels offsets at the TCTA/3P-T2T interface.

3P-T2T can not only accommodate highly efficient blue, but can also act as suitable host for green, yellow and red phosphorescent emitters.

General Information


CAS number 352196-01-1
Chemical formula C30H21N9
Molecular weight 507.56 g/mol
Absorption λmax 267 nm (in film)
Fluorescence λem 415 nm (in film)
HOMO/LUMO HOMO = 6.43 eV, LUMO = 2.98 eV [1]; ET= 2.85 eV
Full chemical name 2,4,6-tris(2-(1H-pyrazol-1-yl)phenyl)-1,3,5-triazine
Synonyms 3P-T2T
Classification / Family Triazine derivatives, TADF exciplex co-host, Phosphorescent organic light-emitting devices (PHOLEDs),Phosphorescent host, Electron transporting layer (ETL), Sublimed materials

Product Details


Purity Sublimed >99.0% (HPLC)
Melting point Td = 352 °C, Tg = 64 °C (lit.)
Appearance Off-white powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the sublimed materials.

Chemical Structure


Chemical structure 3P-T2T, CAS 352196-01-1
Chemical structure of 2,4,6-tris(2-(1H-pyrazol-1-yl)phenyl)-1,3,5-triazine (3P-T2T), CAS 352196-01-1

Device Structure(s)


Device structure ITO/pedot:pss (30 nm)/NPB (20 nm)/TCTA (5 nm)/TCTA:3PT2T50 mol % (25 nm)/ 3P-T2T (50 nm)/Liq/Al [1]
Colour Yellow Yellow light emitting device
Max. Current Efficiency 23.6 cd/A
Max. EQE 7.8 %
Max. Power Efficiency 26.0 Im/W
Device structure ITO/MoO3 (3 nm)/NPB (20 nm)/TCTA (8 nm)/TCTA:3P-T2T (1:1): 1 wt% DCJTB (15 nm)/3P-T2T (45 nm)/LiF (1 nm)/Al [2]
Colour Red Red device light emitting device
Max. Current Efficiency 22.7 cd/A
Max. EQE 10.15 %
Max. Power Efficiency 21.5 Im/W
Device structure ITO/4 wt% ReO3:Tr-Ph (60 nm)/Tr-Ph (15 nm)/Tr-Ph:3P-T2T (1:1, 20 nm)/3P-T2T (10 nm)/CN-T2T (40 nm)/Liq (0.5 nm)/Al (100 nm) [3]
Colour Yellow Yellow light emitting device
Max. Current Efficiency 29.8 cd/A
Max. EQE 10.3%
Max. Power Efficiency 37.5 Im/W
Device structure ITO/HAT-CN (15 nm)/TAPC (30 nm)/mCBP (5 nm)/4CzIPN:o-CbzBiz (9 wt %; 25 nm)/3P-T2T (50 nm)/LiF (1 nm)/Al (100 nm) [4]
Colour Green Green light emitting device
Max. Current Efficiency 52.9 cd/A
Max. EQE 16.7%
Max. Power Efficiency 41.6 Im/W

Pricing


Grade Order Code Quantity Price
Sublimed(>99.0% purity) M2273A1 100 mg £260
Sublimed(>99.0% purity) M2273A1 250 mg £520
Sublimed(>99.0% purity) M2273A1 500 mg £950
Sublimed(>99.0% purity) M2273A1 1 g £1450

MSDS Documentation


3P-T2T MSDS3P-T2T MSDS sheet

Literature and Reviews


  1. Highly Efficient Bilayer Interface Exciplex For Yellow Organic Light-Emitting Diode, W-Y. Hung et al., ACS Appl. Mater. Interfaces, 5, 6826−6831 (2013); DOI: 10.1021/am402032z.
  2. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host, B. Zhao et al., Sci. Report, 5, 10697 (2015); DOI: 10.1038/srep10697.
  3. New exciplex systems composed of triazatruxene donors and N-heteroarene-cored acceptors, Y-C. Hu et al., Mater. Chem. Front., 4, 2029-2039 (2020); DOI: 10.1039/d0qm00188k.
Return to the top