FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.


Product Code N/A
Price $263.00 - $325.00 ex. VAT

PEDOT:PSS and PEDOT dispersions for a range of applications

AI 4083, PH 1000, HTL Solar, HTL Solar 3, and F HC Solar for thin-film electronic fabrication

PEDOT:PSS (or Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) is a transparent conductive polymer consisting of a mixture of the ionomers poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate. Due to its unique combination of conductivity, transparency, ductility, and ease of processing, PEDOT:PSS has become a benchmark material in thin-film electronic fabrication.

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate can be used as an interfacial layer for hole transport in organic light emitting diodes, organic photovoltaics, and perovskite photovoltaics. It can also be used as a replacement for transparent conductors such as ITO or FTO and is used commonly in applications where the underlying substrate is flexible.

PEDOT:PSS from Ossila was featured in the high-impact paper (IF 30.85)

PEDOT:PSS from Ossila was featured in the high-impact paper (IF 30.85), A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte, L. Manjakkal et al., Adv. Mater., 1907254 (2020); DOI: 10.1002/adma.201907254.

Ossila supplies a range of PEDOT:PSS and PEDOT dispersions that are suitable for a range of different applications.

AI 4083

Order code M121

Deep work function of 5.0 - 5.2 eV

For interfacial layers in photovoltaic (OPV) and light emitting diodes (OLED)


PH 1000

Order code M122

High conductivity and optical transparency

For high conductivity films and interfacial layers


HTL Solar

Order code M124

Improved wetting properties, particularly in inverted OPV cells

For surfaces that are difficult to wet with an aqueous dispersion


HTL Solar 3

Order code M125

Uses an alternative counter ionomer to PSS to allow for the dispersion in toluene

For use with perovskite materials and whenever water-based dispersion is problematic


F HC Solar

Order code M126

Water based PEDOT:PSS formulation with high conductivity and low contact angle for improved desposition

Developed primarily for organic photovoltaics (OPVs) application


The properties of PEDOT:PSS vary from dispersion to dispersion, hence its versatility. The key properties of PEDOT:PSS are the extent to which it is conductive and the size of its work function. Since PEDOT is conductive and PSS insulating, the conductivity of the resulting polymer depends on ratio between these two ionomers and the microstructure of the film. Similarly, a higher presence of PSS at the surface will result in a deeper work function.

PEDOT:PSS typically comes as a water based emulsion which is created via the polymerization of PEDOT monomers in a polystyrene sulfonic acid solution. We supply all our PEDOT:PSS solutions in light resistant bottles with temperature indicators.

PEDOT being added to a spin coater
PEDOT Deposition with the Ossila Spin Coater (we recommend the use of a syringe pump)


PEDOT:PSS is the subject of a considerable amount of research, and is used for a range of applications within thin-film electronic fabrication. This includes perovskite photovoltaics, organic photovoltaics, organic light emitting diodes, transparent conductors, organic electrochemical transistors, flexible electronics, thermoelectric generators, supercapacitors, and energy storage

Perovskite photovoltaics

PEDOT:PSS has been used as a hole extraction material in inverted devices in order to facilitate the extraction of charge carriers at the interface between the transparent conductive oxide and the active perovskite layer. Inverted perovskite devices using PEDOT:PSS typically show lower hysteresis than standard architecture devices. In addition, recent work on standard architecture devices shows that the toluene based PEDOT:PSS can be used as a cheap alternative to Spiro-OMeTAD.

Organic photovoltaics

PEDOT:PSS has long been used as a standard material in device fabrication, and has been extensively used with materials such as P3HT and PCDTBT to form the backbone of fundamental research into polymer solar cells. In addition, PEDOT:PSS is being used in combination with state of the art organic photovoltaic materials to push new efficiency limits.

Organic light emitting diodes

The use of PEDOT:PSS in organic light emitting diodes has been widespread for over a decade now as a well established standard hole injection material. Recent work still uses PEDOT:PSS due to its deep work function, which allows for efficient charge injection into white emitting polymers as well as host materials for thermally activated delayed fluorescence materials.

Transparent conductors

PEDOT:PSS is a potential replacement for expensive transparent metal oxides such as ITO and FTO, and has been shown to be effective in both organic photovoltaic and perovskite photovoltaic devices. In addition, in combination with metallic grid structures, sheet resistances comparable to metallic films are possible.

Substrate surfaces should be prepared before the deposition of PEDOT:PSS to ensure that they are clean. This can be done using DI water, Hellmanex III, isopropyl alcohol and a UV Ozone Cleaner. Once the surface is ready, a spin coater can be used to create a PEDOT:PSS thin film.

Frequently Asked Questions

What Makes PEDOT:PSS Conductive?

The electrical conductivity of oxidized polythiophenes has been known about for nearly 40 years. The origins of this conductivity are due to the presence of radical states, which are formed due to the oxidation of the thiophene units. These reduced states are delocalized across the polymer chain, and in the presence of the oxidizer, these radicalized states can be stabilized.

In PEDOT:PSS, the PEDOT is oxidized during the polymerisation reaction by the polystyrene sulfonate. This produces an emulsion where the PSS present stabilizes the radical states on the PEDOT.

Although PEDOT itself is conductive, the PSS present within the blend is insulating. The quantity of PSS and the microstructure of the film therefore have a significant impact on the electronic properties of PEDOT:PSS. In a water based dispersion the PEDOT and PSS form a micelle structure in which the hydrophobic PEDOT core is surrounded by a shell of hydrophilic PSS. During deposition this structure is retained forming localized regions of conductive PEDOT surrounded by insulating regions of PSS. It is this core-shell structure which results in the low conductivity values that can arise for standard formulations of PEDOT:PSS.

Can the Conductivity of PEDOT:PSS be Improved?

Advanced formulations offer increased conductivity of PEDOT:PSS thin films. This is achieved by the addition of secondary solvents (sometimes referred to as secondary dopants) to the solution, or by exposing thin films to these secondary solvents.

It was originally believed that these solvents acted by further doping the PEDOT, hence the name secondary dopant. More recent work has revealed that their presence changes the core-shell structure that is normally seen. When exposed to these solvents the hydrophilic/hydrophobic nature of the PSS/PEDOT components no longer determine the structure. The solvents allow the diffusion and intermixing of the PEDOT and PSS chains, creating a more homogenous film on the microscale. This homogenisation increases the path length of charges along the PEDOT chain, thereby reducing the distance that charges must travel across PSS rich areas.

What Determines the Work Function of PEDOT?

As work function is a surface property of a material, the work function of the PEDOT:PSS blend is determined by the percentage of each component at the surface of the film. PSS has a significantly deeper work function than PEDOT, therefore a higher presence of PSS at the surface will result in a deeper work function. This means that for formulations with higher percentages of PSS, the work function will be higher than those with lower percentages.

In addition, the processing of the PEDOT:PSS film can result in changes to the work function. When PEDOT:PSS forms a core-shell structure, PEDOT is surrounded by PSS. In this case the work function will be dominated by PSS. If the film has been treated such that the components are more homogenously dispersed, however, the work function will become more shallow as the surface becomes richer with PEDOT.

How Should PEDOT Materials be Stored?

The recommended storage temperature of PEDOT:PSS and PEDOT dispersions is between 5 and 10 degrees Celsius. It is therefore recommended that you store the dispersion at the front of a refrigerator. The product is not usable if frozen, so should be kept away from the back of the refrigerator (where it is coldest).

The dispersions can tolerate a few days to a week outside of the refrigerator (e.g. during shipping) without negative consequences on the PEDOT:PSS performance. Over time at elevated temperatures, the PEDOT:PSS can phase separate, aggregate and form a solid that drops to the bottom of the bottle, reducing performance. Brief heating to a max. of 50°C however has no adverse effect on product properties.

What is the Shelf Life of PEDOT Materials?

When stored at 5 - 10 degrees Celsius, the PEDOT:PSS dispersion will give you consistent performance over 12 months if used regularly. The official recommended shelf life from the manufacturer is 9 months after production, if the dispersion is never used or disturbed. After this time, the dispersion will gradually separate/sediment out at a very slow rate, resulting in lower concentrations and ultimately thinner films.

This degradation is mitigated by frequent use of the dispersion due to the gentle agitation caused when decanting. Through constant use, it is possible to use a single bottle of PEDOT:PSS for many years without harming device performance.

Getting Started with PEDOT:PSS and PEDOT Dispersions

Surface Preparation

To ensure a uniform coating, it is important to make sure that the surface of your substrate is as clean as possible before you begin the deposition process. To prepare a substrate for PEDOT:PSS deposition:

  1. Choose a substrate (FTO Glass, ITO Glass, Glass, or SiO2 substrate) and place it in a substrate rack
  2. Sonicate your chosen substrate for 5 minutes in hot (70°C) DI water with 1% Hellmanex III
  3. Dump-rinse twice in boiling DI water
  4. Sonicate your chosen substrate for 5 minutes in Isopropyl alcohol
  5. Dump-rinse twice in boiling DI water
  6. Dry your chosen substrate using filtered compressed gas
  7. Place the chosen substrate into a UV Ozone Cleaner and leave for 10 minutes

UV Ozone Cleaner

  • Large Cleaning Area
  • Powerful UV Lamp
  • No Sample Damage

Buy Online £2500

Thin-Film Deposition of PEDOT:PSS

For the deposition of thin films of PEDOT:PSS on a freshly prepared surface, we recommend using a vacuum-free spin coater and following this five step process:

  1. Filter your PEDOT:PSS solution through a 0.45 µm PES filter (or hydrophobic PTFE filter for HTL Solar 3) into an amber vial
  2. Preheat a hot plate to 120 °C ready for use in step 5
  3. Place a freshly prepared substrate into an Ossila Spin Coater and set to the desired spin speed
  4. The substrates should be spun until the films are dry, for PEDOT:PSS films this is typically >30 s
  5. Once the spin coating has finished place the samples on a hotplate for 15 minutes to fully dry

For speeds below 1000 rpm we recommend static spin coating. For higher speeds, dynamic spin coating can be used.

Spin Coater

  • Vacuum-Free Design
  • Compact Size
  • No Substrate Warping

Available From £2300

Obtaining a Uniform Coating

The coating quality of the PEDOT:PSS will be dependent upon several factors. These include the PEDOT formulation you are using, the deposition technique, the surface you are depositing onto and the cleanliness of the surface. Ideally, the film should be highly uniform across the entire surface with possible variations at the ends of your sample due to edge effects.

Sometimes due to the wetting conditions of the PEDOT formulation on the surface, the coating may not be uniform. If this occurs there are several things that can be done. The first is to ensure that the surface of your sample is clean, if possible use a combination of solvent cleaning steps and UV ozone or oxygen plasma treatments (as described above) to ensure a completely clean surface. If this does not improve the quality of the surface, secondary solvents can be added. For AI 4083 and PH 1000 the addition of approximately 10% isopropanol can improve the wetting on surfaces.


  • Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, H. J. Snaith et. al. Nature Communications, 4, (2013) DOI: 10.1038/ncomms3761
  • High efficiency stable inverted perovskite solar cells without current hysteresis, M. Grätzel et. al. Energy Environ. Sci. 8, (2015) 2725-2733 DOI: 10.1039/c5ee00645g
  • Employing PEDOT as the p-type charge collection layer in regular organic-inorganic perovskite solar cells, H. J. Snaith et. al. J. Phys. Chem. Lett. 6 (9), (2015) 1666-1673 DOI: 10.1021/acs.jpclett.5b00545
  • Nanoscale morphology of high-performance polymer solar cells, R. A. J. Janssen, Nano Lett. 5 (4), (2005) 579-583 DOI: 10.1021/nl048120i
  • Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, A. J. Heeger Nature Photonics, 3, (2009) 297-302 DOI: 10.1038/nphoton.2009.69
  • Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%, Y. Sun et. al. Adv. Mater. 27 (18), (2015) 2938-2944 DOI: 10.1002/adma.201500647
  • Molecular organic light-emitting diodes using highly conducting polymers as anodes, H. Kafafi et. al. Appl. Phys. Lett. 80, (2002) 3844 DOI: 10.1063/1.1480100
  • High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission, Y. Cao et. al. Adv. Mater. 18, (2006) 1769-1773 DOI: 10.1002/adma.200502740
  • A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs, J. Y. Lee et. al. Adv. Mater. 26, (2014) 4050-4055 DOI: 10.1002/adma.201400347
  • Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, C. W. Chu et. al. Energy Environ. Sci. 5, (2012) 9662-9671 DOI: 10.1039/C2EE22595F
  • Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air, S. Bauer et. al. Nature Materials, 14, (2015) 1032-1039 DOI: 10.1038/nmat4388
  • All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, F. C. Krebs, Org. Electron. 10 (5), (2009) 761-768 DOI: 10.1016/j.orgel.2009.03.009

Support and Articles

Technical Data


Heraeus Clevios™ AI 4083 is one of the most commonly used PEDOT:PSS formulations, due to its deep work function it is often used for matching of interfacial energy levels in thin film electronic devices.

CAS Number 155090-83-8
Resistivity 500 - 5000 Ω.cm
Solid Content 1.3 - 1.7 wt.% (in water)
Viscosity 5 - 12 mPa.s
PEDOT:PSS Ratio 1:6
Particle Size Distribution D90 = 100 nm; D50 = 80 nm
Work Function 5.0 - 5.2 eV
Packaging 100 ml of solution sealed in a light resistant bottle with temperature indicator

AI 4083 MSDS and Spin Speed Thickness Graph

PEDOT:PSS (AI 4083) MSDS sheetPEDOT:PSS (AI 4083) MSDS Sheet

Spin speed thickness curve for PEDOT:PSS (AI 4083)PEDOT:PSS (AI 4083) Spin Speed Thickness Graph


Heraeus Clevios™ PH 1000 PEDOT:PSS is designed for applications where high conductivity and optical transparency are required. The potential uses for high conductivity PEDOT:PSS formulations include replacements for ITO, semitransparent top electrodes in thin film electronics, top gate electrodes in FETs, and for use as a thick planarisation layer on rough surfaces such as FTO. Sheet resistances as low as 300 Ω/square can be achieved with the addition of conductivity enhancement agents such as dimethylsulfoxide and ethylene glycol.

CAS Number
Resistivity <0.0012 Ω.cm*
Solid Content 1.0 - 1.3 wt.% (in water)
Viscosity <50 mPa.s
PEDOT:PSS Ratio 1:2.5
Particle Size Distribution D50 = 30 nm
Work Function 4.8 - 5.0 eV
Packaging 100 ml of solution sealed in a light resistant bottle with temperature indicator

*With use of 5% DMSO by volume as a morphology enhancer

PH 1000 MSDS and Spin Speed Thickness Graph

PEDOT:PSS (PH 1000) MSDS sheetPEDOT:PSS (PH 1000) MSDS Sheet

Spin speed thickness curve for PEDOT:PSS (PH 1000)PEDOT:PSS (PH 1000) Spin Speed Thickness Graph


Heraeus Clevios™ HTL Solar is a PEDOT:PSS formulation designed for use in thin film electronics as an interfacial material. The advantage of the HTL Solar formulation is its improved wetting properties, particularly in inverted OPV cells, compared to the other PEDOT:PSS formulations in our catalogue.

CAS Number 155090-83-8
Resistivity 1 - 10 Ω.cm
Solid Content 1.0 - 1.3 wt.% (in water)
Viscosity 8 to 30 mPa.s
PEDOT:PSS Ratio 1:2.5
Work Function 4.8 - 5.0 eV
Packaging 100 ml of solution sealed in a light resistant bottle with temperature indicator

HTL Solar MSDS and Spin Speed Thickness Graph


Spin speed thickness curve for PEDOT:PSS (HTL Solar)PEDOT:PSS (HTL Solar) Spin Speed Thickness Graph

PEDOT:complex (HTL Solar 3)

Heraeus Clevios™ HTL Solar 3 is a PEDOT formulation using a alternative counter ionomer to PSS to allow for the dispersion in toluene. HTL Solar 3 is ideal for use with materials or in environments that are water sensitive, such as in glove box environments or for use with perovskite materials.

CAS Number 155090-83-8
Resistivity 5 - 500 Ω.cm
Solid Content 1.5 to 2.5 wt.% (in toluene <0.5% water)
Viscosity <10 mPa.s
Work Function 4.4 - 4.8 eV
Packaging 2 x 25 ml of solution sealed in a light resistant bottles with temperature indicator

HTL Solar 3 MSDS and Spin Speed Thickness Graph

PEDOT:PSS (HTL Solar 3) MSDS sheetPEDOT:PSS (HTL Solar 3) MSDS Sheet

Spin speed thickness curve for PEDOT:PSS (HTL Solar 3)PEDOT:PSS (HTL Solar 3) Spin Speed Thickness Graph


Heraeus Clevios™ F HC Solar is a water based PEDOT:PSS formulation. F HC Solar is especially developed for applications of organic photovoltaics (OPVs) such as polymer and perovskite solar cells and printed sensors. The main advantages F HC Solar ink are its high conductivity and low contact angle to improve the deposition on top of the active layer.

CAS Number 155090-83-8
Conductivity (Dried Layer) 500 S/cm
Solid Content 1.0 - 1.5 wt.% (in water)
Viscosity <8 - 70 mPa.s
Work Function 4.8 - 5.0 eV
Packaging 100 ml of solution sealed in a light resistant bottles with temperature indicator


PEDOT:PSS (F HC Solar) MSDS sheetPEDOT:PSS (F HC Solar) MSDS Sheet


PEDOT:PSS Product Code Quantity Price
Al 4083 M121 100 ml £210.00
PH 1000 M122 100 ml £210.00
HTL Solar M124 100 ml £210.00
HTL Solar 3 M125 50 ml £240.00
F HC Solar M126 100 ml £260.00

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top