Order Code: M581
MSDS sheet


(excluding Taxes)


General Information

CAS number 135-48-8
Chemical formula C22H14
Molecular weight 278.35 g/mol
Absorption λmax 576 nm (in benzene) [11]
Fluorescence λem 578 nm (in benzene)
  • Benzo[b]naphthacene
  • 2,3:6,7-Dibenzanthracene
Classification / Family

Acene derivatives, Hole-injection layer materials, Hole transport layer materials, Phosphorescent host materials, Photovoltaic materials, Sublimed materials, Light-emitting diodes, Light emitting field-effect transistors (LEFETs), Organic field-effect transistors, Photovoltaic solar cells, Organic electronics


Product Details

Purity >99% (sublimed)
Melting point  372-374 °C (subl.)
Colour purple-black crystals/powder
Solvents Pentacene is insoluble in most of the organic solvents. Triclhorobenzene is normally used to form solution at 60 - 120 °C [10]

*Sublimation is a technique used to obtain ultra pure grade chemicals by removing trace metals and inorganic impurities. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.


Chemical Structure

Chemical Structure of Pentacene; CAS No. 135-48-8; Chemical Formula C22H14


Pentacene, an acene with flat-like molecules made of five linearly-fused benzene rings, has been extensively studied as a p-type semiconductor in organic field-effect transistors. It is known to exhibit large carrier mobilities of about 1 cm2 /V s within the plane parallel to the substrate.

Due to its large carrier mobilities, pentacene has also been used with C60 in heterojunction solar cells with a power conversion efficiency over 2.7% [1, 2, 4, 5] and made into devices for light-emitting diode applications [3, 6]

Device structure  ITO/Pentacene (45 nm)/C60 (50 nm)/BCP (10 nm)/Al [1]
Jsc (mA cm-2) 15±3 
Voc (V) 0.363±0.03
FF (%) 50±1
PCE (%) 2.7±0.4


Device structure

ITO/pentacene:CuPc (4:96 wt%, 20 nm)/C60 (60 nm)/BCP

(8 nm)/Al (80 nm) [2]

Jsc (mA cm-2) 12.93
Voc (V) 0.52
FF (%) 46
PCE (%) 3.06



Device structure     ITO/PEDOT:PSS/pentacene (10 nm)/Alq3 (30 nm)/Al  [3]
Colour Green  green
Max. EQE n.a.
Max. Current Efficiency 8.2 cd/A


Literature and Reviews

  1. Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions, S. Yoo et al., Appl. Phys. Lett. 85, 5427 (2004); doi: 10.1063/1.1829777.
  2. Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer, W.-B. Chen et al., Appl. Phys. Lett. 91, 191109 (2007);
  3. Improved performance of organic light emitting diodes by pentacene as hole transporting layer, 
    F. Zhang et al., Appl. Surf. Sci., 255, 1942–1945 (2008), doi:10.1016/j.apsusc.2008.06.166.
  4. Efficient organic photovoltaic diodes based on doped pentacene, J. H. Schön et al., Nature 403, 408-410 (2000). doi:10.1038/35000172.
  5. External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell, D. N. Congreve et al., Science 340 (6130) 334-337 (2013). DOI: 10.1126/science.1232994.
  6. A pentacene-doped hole injection layer for organic light-emitting diodes, S. Shi et al., Semicond. Sci. Technol. 20, 1213-1216 (2005).
  7. Light emitting field-effect transistors with vertical heterojunctions based on pentacene and tris-(8-hydroxyquinolinato) aluminum, S. Cui et al., Org. Electronics, 22, 51-55 (2015). doi:10.1016/j.orgel.2015.03.029.
  8. Ambipolar pentacene/C60-based field-effect transistors with high hole and electron mobilities in ambient atmosphere, H. Yan et al., Appl. Phys. Lett. 94, 023305 (2009); 
  9. Low-Voltage, High-Mobility Pentacene Transistors with Solution-Processed High Dielectric Constant Insulators, C. D. Dimitrakopoulos et al., Adv. Mater., 11 (16), 1372-1375 (1999). DOI: 10.1002/(SICI)1521-4095(199911)11:16<1372::AID-ADMA1372>3.0.CO;2-V.
  10. Direct Formation of Pentacene Thin Films by Solution Process, T. Minakata et al., Synth. Metals 153, 1–4 (2005).doi:10.1016/j.synthmet.2005.07.210.
  11. Electronic Absorption and Fluorescence of Phenylethynyl- Substituted Acenes, D. R. Maulding et al., J. Org. Chem., 34 (6), 1734–1736 (1969);DOI: 10.1021/jo01258a045.