FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

Product Code M0311A9-100mg
Price £260 ex. VAT

DPP-DTT, high quality and high purity semiconducting polymer

High performance p-type polymer and donor material for BHJ photovoltaics

Overview | Specifications | Pricing and Options | MSDS | Literature and Reviews

DPP-DTT is a high mobility p-type polymer, suitable for OFET and sensing and photovoltaic applications.

Ossila's DPP-DTT was used in a high impact paper

DPP-DTT from Ossila was used in the high-impact paper (IF 18.81), Stretchable Mesh-Patterned Organic Semiconducting Thin Films on Creased Elastomeric Substrates, S. Kim et al., Adv. Funct. Mater., 2010870 (2021); DOI: 10.1002/adfm.202010870.

Luminosyn™ DPP-DTT

Luminosyn™ DPP-DTT (also referred to as PDPP2T-TT-OD) is now available.

High molecular weight
Higher molecular weight offers higher charge mobility

High purity
DPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere

Batch-specific GPC data
Have confidence in what you are ordering; batch-specific GPC data for your thesis or publications

Large quantity orders
Plan your experiments with confidence with polymers from the same batch

General Information

CAS number 1260685-66-2 (1444870-74-9)
Chemical formula (C60H88N2O2S4)n
HOMO / LUMO HOMO = -5.2 eV, LUMO = -3.5 eV [2]
  • PDBT-co-DTT
  • Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]
Solubility o-xylene, chloroform, chlorobenzene and dichlorobenzene
Classification / Family Bithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs

Chemical Structure

dpp-dtt, PDPP2T-TT-OD, PDBT-co-DTT, 1260685-66-2, 1444870-74-9
Chemical structure and product image of DPP-DTT, CAS 1260685-66-2


Batch Quantity Price
M0311A 100 mg £260
M0311A 250 mg £520
M0311A 500 mg £900
M0311A 1 g £1600
M0311A 2 g £2900
M0311A 5 g / 10 g* Please enquire

*For 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch information

Batch* Mw Mn PDI Stock info
M0311A4 152,923 55,143 2.77 Discontinued
M0311A5 100,105 39,080 2.56 Discontinued
M0311A6 87,278 37,778
2.31 Discontinued
M0311A7 111,029 45,803 2.42 Discontinued
M0311A8 142,775 50,550 2.82 Discontinued
M0311A9 122,960 42,995 2.86 In Stock

*Older batch information available on request.


MSDS Documentation


OFET and Sensing Applications

The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.

While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.

In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved  (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.

DPP-DTT OFET output characteristics DPP-DTT OFET transfer curves
DPP-DTT saturation mobility fit DPP-DTT OFET mobility
Example OFET characteristics for DPP-DTT (Batch M311, Mw = 87 kDa, PDI = 4.1) solution processed from chlorobenzene on a 300 nm SiO2 substrate treated with OTS. Output characteristic (top left), transfer curves (top right), mobility fitting (bottom left) and calculated mobility (bottom right).

Photovoltaic Applications

Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].

PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].

Synthetic route

DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):

With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

DPP-DTT synthesis procedure to achieve M1

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

DPP-DTT synthesis procedure - reaction of M1 and M2 to achieve DPP-DTT


  1. A High Mobility P-Type DPP-Thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors, Y. Li et al., Adv. Mater., 22, 4862-4866 (2010)
  2. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, J. Li et al., Nature Scientific Reports, 2, 754, DOI: 10.1038/srep00754 (2012)
  3. Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications, G. Zhang et al., Sol. Energ. Mat. Sol. C., 95, 1168-1173 (2011)
Return to the top