Order Code: M2179A1
Price excludes taxes
Not in stock (price excludes taxes)
Price: Loading...


 Grade Order Code Quantity Price
Sublimed (>99% purity) M2179A1 100 mg £195.0
Sublimed (>99% purity) M2179A1 250 mg £390.0
Sublimed (>99% purity) M2179A1 500 mg £663.0
Sublimed (>99% purity) M2179A1 1 g £1130.0

General Information

CAS number 266349-83-1
Full name 4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl, 4,4'-bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,10-biphenyl
Chemical formula C42H28N6
Molecular weight 616.71 g/mol
Absorption n.a.
Fluorescence n.a.
HOMO/LUMO HOMO = 6.18 eV, LUMO = 2.14 eV [1]
Classification / Family Triazine derivatives, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, TADF materials.

Product Details

Purity Sublimed > 99% (LCMS)
Melting point 362 °C (lit.); Tg = 137 °C
Appearance White crystals/powder

chemical structure of BTB
Chemical Structure of BTB; CAS No. 266349-83-1.


BTB, a triazine compound, namely 4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl, is used as an electron-transport material in organic light-emitting devices (OLEDs) due to its electron deficiency from the two triazine units.

With electron mobility greater than 10−4 cm2V−1 s−1, BTB demonstrates an electron mobility 10-fold greater than that of the widely-used material tris(8-hydroxyquinoline) aluminum (Alq3). OLEDs incorporating BTB as the electron transport layer exhibit lower driving voltages and higher efficiencies - relative to those incorporating Alq3.

BTB, like other electron-deficient materials (such as T2T), can be used as a phosphorescent host material for green and red light-emitting diodes.

Device structure                Al/NPD (40 nm)/CPCBPTz*:Ir(mppy)3 (10 vol.%, 30 nm)/BTB (30 nm)/LiQ (0.8 nm)/Al (80 nm) [1]
Colour Green green
Max. Power Efficiency 25.5. ± 9.1 lm W1
Max. Current Efficiency 20.3 ± 6.6 cd/A
Max. EQE  8.2 ± 0.9%


Device structure                Al/NPD (40 nm)/CPCBPTz*:Ir(mppy)3 (10 vol.%, 15 nm)/BCzPh:Ir(mppy)3 (10 vol.%, 15 nm)/BTB (30 nm)/LiQ (0.8 nm)/Al (80 nm) [1]
Colour Green green
Max. Power Efficiency 23.8 ± 3.6 lm W1
Max. Current Efficiency 15.4 ± 0.8 cd/A
Max. EQE  8.5 ± 0.4%


Device structure                ITO/NPB (60 nm)/Alq3:0.6 wt% C545T (15 nm)/BTB (45 nm)/Mg:Ag [2]
Colour Green green
Max. Power Efficiency 10.18 lm W1
Max. Current Efficiency 10.53 cd/A


Literature and Reviews

  1. Mapping Recombination Profiles in Single-, Dual-, and Mixed-Host Phosphorescent Organic Light Emitting Diodes, P. Kuttipillai et al., Org. Electron., 57, 28-33 (2018); 10.1016/j.orgel.2018.02.025.
  2. High electron mobility triazine for lower driving voltage and higher efficiency organic light emitting devices, R. Klenkler et al., Org. Electron., 9, 285–290 (2008); doi: 10.1016/j.orgel.2007.11.004.
  3. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs, H. Chen et al., J. Mater. Chem., 19, 8112–8118 (2009); DOI: 10.1039/b913423a.