Tin(II) Sulfide (SnS) Crystal
Tin(II) sulfide crystal, high purity semiconducting material
For applications in next generation photovoltaic solar cells
Tin(II) sulfide (SnS), with a direct energy band-gap of about 1.3 eV, and a high optical absorption coefficient over 5 × 104 cm-1, is a promising new candidate for applications in the next generation of photovoltaic solar cells. Made of earth-abundant, relatively cheap and environmentally-nontoxic elements, SnS is solution processable and stable in both alkaline and acidic conditions.
Like the other family members of layered group IV monochalcogenides (including SnSe, GeS, and GeSe), 2D layered SnS has puckered structures - similar to those of black phosphorus. SnS crystallises in the form of an orthorhombic structure, where each Sn(II) atom is coordinated to six S atoms - with three short Sn–S bonds within the surface and three longer Sn-S bonds connecting outer surface of the same layer.
As an analogue to phosphorene, 2D SnS has also been predicted to have strong in-plane anisotropy. However, with two elements of different electronegativity (compared to phosphorene with its single element), the symmetry of SnS structure is rendered, leading to even richer physical properties.
Structure of Tin(II) Sulfide Crystal

Platinum FET Test Chips for 2D Materials

- Affordable
- World-Wide Shipping
- Dual Channel Electrodes
Buy Online £180.00
Applications of Tin(II) Sulfide Crystal
In the form of single or few-layer thin films, exfoliated SnS nanosheets have various applications. These include light emitters, field effect transistors (FETs), gas sensors, photodetectors, thermoelectric and photovoltaic devices.
Synthesis
Tin(II) sulfide (SnS) is manufactured using chemical vapour transport (CVT) crystallisation, with crystals having a purity in excess of 99.999%.
Usage
Tin(II) sulfide single crystals can be used to prepare monolayer and few-layer SnS by mechanical or liquid exfoliation.
Viscoelastic transfer using PDMS
Literature and Reviews
- Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, J. Vidal et al., Appl. Phys. Lett. 100, 032104 (2012); DIO: 10.1063/1.3675880.
- Few-Layer Tin Sulfide: A New Black-Phosphorus-Analogue 2D Material with a Sizeable Band Gap, Odd−Even Quantum Confinement Effect, and High Carrier Mobility, C. Xin et al., J. Phys. Chem. C, 120, 22663−22669 (2016); DOI: 10.1021/acs.jpcc.6b06673.
- Growth of Large-Size SnS Thin Crystals Driven by Oriented Attachment and Applications to Gas Sensors and Photodetectors, J. Wang et al., ACS Appl. Mater. Interfaces, 8, 9545−9551 (2016); DOI: 10.1021/acsami.6b01485.
- Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy, Z. Tian et al., ACS Nano, 11, 2219−2226 (2017); DOI: 10.1021/acsnano.6b08704.
- Nanostructured SnS with inherent anisotropic optical properties for high photoactivity, M. Patel et al., Nanoscale, 8, 2293 (2016); DOI: 10.1039/c5nr06731f.
- Valley physics in tin (II) sulfide, A. S. Rodin et al., Phys. Rew. B, 93, 045431 (2016); DOI: 10.1103/PhysRevB.93.045431.
Technical Data
CAS Number | 1314-95-0 |
Chemical Formula | SnS |
Molecular Weight | 150.78 g/mol |
Bandgap | 1.07 - 1.32 eV [1] |
Preparation | Synthetic - Chemical Vapour Transport (CVT) |
Structure | Orthorhombic |
Electronic Properties | 2D semiconductor |
Melting Point | 882 °C (lit.) |
Colour | Brown/Yellow |
Synonyms | Tin sulfide, Stannous sulfide, Tin monosulfide, Tin sulphide, Herzenbergite |
Classification / Family | Transition metal dichalcogenides (TMDCs), 2D semiconductor materials, Nano-electronics, Nano-photonics, Materials science |
Product Details
Form | Purity |
Crystal | ≥99.999% |
MSDS Documents
Pricing Table
Product Code | Form | Size* | Quantity (EA) | Price |
M2113A10 | Crystal | Small (≥10 mm2) | 1 | £480.00 |
M2113A25 | Crystal | Medium (≥25 mm2) | 1 | £760.00 |
*typical representative size, areas/dimensions may vary
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.