Encapsulation Epoxy for Photovoltaics and OLEDs

Order Code: E131
MSDS sheet


(excluding Taxes)


A light-curable epoxy suitable for solar cell and LED encapsulation which sets at wavelengths of up to 600 nm and is safe for use with most organic materials.

Curing wavelength: up to 600 nm


approx. 100 μl per standard sized substrate (10 ml ~ 100 standard substrates)

approx. 600 μl per scale up sized substrate (60 ml ~ 100 scale up substrates)



Ossila's E131 PV & LED Encapsulation Epoxy can be used as an adhesive for organic light-emitting diodes and organic photovoltaics without damaging the polymer or cathode. In conjunction with a glass coverslip, it can provide a robust barrier against ingress of oxygen and water to provide extended lifetimes for measurement and storage.

Curing can be achieved with UV or visible wavelengths as long as 600 nm, and at high intensities (100 mW/cm2) takes as little as 5 seconds. At lower intensities (such as those found in many lab-scale light boxes), curing time may be considerably longer (at up to 20 minutes).

Our encapsulation epoxy has been shown to encapsulate flexible substrates during an Innovate UK funded investigation.


PV & LED Encapsulation Process with Ossila Epoxy

For small substrates (up to 2 cm2), place a single drop of epoxy dispensed from the end of a pipette onto the surface of the substrate and place a glass coverslip over the top. The encapsulation epoxy will then spread under the weight of the cover-slip over the course of a few seconds.

Check for voids and air bubbles under the cover-slip and if necessary gently press down on the coverslip to remove. Ensure the active area and metal cathode are covered.

Place in a light-box and expose until hardened.

Note: the encapsulation epoxy should not be used on moist or alkaline surfaces and should not be allowed to come into contact with tin, brass or copper.

Please also note: If used in a glovebox, the encapsulation epoxy should be allowed to de-gas any absorbed oxygen/water for at least 24 hours prior to entering the glovebox.


Pixelated anode OLED substrates schematic
Encapsulated OLED when new Encapsulated OLED after six months
1 week old device vs 6 month old device


Viscosity 300 cps @ 23°C
Colour Amber to light brown transparent liquid
Cure schedule 5 to 30 seconds at 250 to 600 nm at 10-100 mW/cm2
Refractive index 1.4957
Specific gravity 1.17
Cured Shore D Hardness 92+ D
Tensile strength 7,000 psi
Elongation <2%
Glass transition temperature 130°C
CTE 20 x 10-6
Shelf life 12 months at 23°C
Dielectric constant 3.94 @ 60 Hz @ 20°C
Volume resistivity 3.0 x 1014 Ω cm

As featured in button




Radiative efficiency of lead iodide based perovskite solar cells, Henry Snaith et al., Scientific Reports, 4:6071, 2014




"Perovskites have already reached impressive power conversion efficiencies, and one of the main reasons for this is found in its high photovoltage which relates directly to its comparatively high ability to emit light."

As featured in button




Encapsulating light-emitting electrochemical cells for improved performance, Amir Asadpoordarvish et al., Appl. Phys. Lett., Vol. 100, 193508, 2012




"To summarize, we present a functional and scalable encapsulation procedure for LECs, which results in devices with a highly satisfactory ambient stability, as quantified by an uninterrupted lifetime of 490 h at a high brightness of >300 cd/m2 and a maximum current efficacy of 8.3 cd/A."


To the best of our knowledge, the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.