LiTFSI

Order Code: M531
MSDS sheet

Price

(excluding Taxes)

£107.00


General Information

CAS number 90076-65-6
Chemical formula C2F6LiNO4S2
Molecular weight 287.09 g/mol
Synonyms

Lithium bis(trifluoromethanesulfonyl)imide,

Bis(trifluoromethane)sulfonimide lithium salt

Classification / Family Dye Sensitised Solar Cells (DSSC) ,  Light-emitting Diodes, Perovskite HTL Materials, Electrolyte materials.
Storage Product is hygroscopic. Store under inert atmosphere or in a dessicator.

 

Product Details

Purity 99.99%
Boiling point 234-238 °C (lit.)
Colour White powder/crystals

 

 

Chemical Structure

chemical structure of LiTFSI
Chemical structure of Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), CAS No. 90076-65-6

Applications

Lithium bis(trifluoromethylsulphonyl)imide (LiTFSI) is normally used as a p-dopant to enhance the conductivity and hole mobility of the Spiro-OMeTAD for perovskite solar cells. It is believed that The function of LiTFSI in PSCs is similar to that in solid-state dye-sensitised solar cells [2].

Some of the lithium ions can intercalate into TiO2 to downshift its conduction band, resulting in a higher photocurrent. The rest of the lithium ions can react with oxygen and Spiro-OMeTAD to facilitate the generation of oxidised Spiro-OMeTAD, while the large anionTFSI¯, can stabilise the oxidized Spiro-OMeTAD as the counterion [1, 2].

 

It is also essential to add Lithium bis(trifluoromethanesulfonyl)imide to the hole transport materials (HTM) to get a higher conductivity.

 

 

Device structure FTO/c-TiO2/mp-Al2O3/CH3NH3PbBr3−xClx/CBP/Au [3] FTO/c-TiO2/mp-Al2O3/CH3NH3PbBr3−xClx/ CBP:(TBP:LiTFSI, 10% wt)/Au
Jsc (mA cm-2) 1.3 4.0
Voc (V) 1.4 1.5
FF (%) 24 46
PCE (best) 0.44 2.7

 

Characterisation (NMR)

 

19F NMR LiTFSI

19F NMR of Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in d6-DMSO (see full version)

 

litfsi elemental analysis

Purity accessment of LiTFSI.

Literature and Reviews

  1. Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells, S Wang et al., ACS Appl. Mater. Interfaces 7, 24791-24798 (2015). DOI: 10.1021/acsami.5b07703.
  2. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells, A. Abate et al., Phys. Chem. Chem. Phys., 15, 2572-2579 (2013). DOI: 10.1039/C2CP44397J.
  3. Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells, E. Edri et al., J. Phys. Chem. Lett., 5 (3), 429–433 (2014), DOI: 10.1021/jz402706q.
  4. Sequential deposition as a route to high-performance perovskite-sensitized solar cells, J. Burschka et al., Nature, 499, 316-319 (2013). doi:10.1038/nature12340.