FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

Getting Started with the Ossila Solar Cell I-V Test System

Current-Voltage Measurements (I-V curves)

Current-voltage measurements (I-V curves) are the primary measurement for characterizing solar cells. Here, the current flowing through the device is measured at different voltages whilst it is under illumination. There are several key properties that can be extracted from the I-V curve of a solar.

Example solar cell IV curve
Example solar cell I-V curve with properties highlighted.

The short-circuit current density (Jsc) is the photogenerated current density of the solar cell when there is no driving voltage, and can be extracted from the intercept with the y-axis.

The open-circuit voltage (Voc) is the voltage at which the applied voltage cancels out the built-in electric field, and can be extracted from the intercept with the x-axis.

The fill factor (FF) is the ratio of the actual output power of the device to its power if there were no parasitic resistances. This can be calculated by dividing the maximum power output of the device by the product of the Jsc and the Voc (the potential maximum power).

Finally, the power conversion efficiency (PCE), the ratio of incident light power (Pin) to output electrical power (Pout), can be calculated.

For a more in-depth explanation about the characterization of solar cells, see our guide on solar cell theory and measurement.

Power Conversion Efficiency (PCE) Equation

The Power Conversion Efficiency (PCE) of a solar cell can be calculated from the ratio of incident light power (Pin) to output electrical power (Pout) using the following equation:

Solar cell PCE equation
The solar cell PCE equation

Here, as above, Jsc is the short-circuit current density, Voc is the open-circuit voltage, and FF is the fill factor.

Contributing Authors


Written by

Dr. Mary O'Kane

Application Scientist

Return to the top