We ship worldwide. Spend or more for FREE tracked shipping to , normally .
For more information, please see our worldwide shipping page.
We ship worldwide. Tracked large item shipping to from . All other products ship free with the purchase of an Ossila Glove Box.
Make sure your lab is fully equipped and stock up on high-quality materials, accessories, and consumables with our large order discounts. Spend over £10,000 for a 10% discount.
MADN, highly-efficient blue host material and HTL material for organic electronic devices
High-purity (>99.0%) and available online for priority dispatch
MADN, 2-methyl-9,10-bis(naphthalen-2-yl)anthracene is commonly known as a blue emitter. It is widely used as a highly-efficient blue host material and hole-transporting material (HTM) for organic electronic devices. Exhibiting an ambipolar transporting ability, MADN offers stable thin-film morphology and a wide energy band-gap.
As a hole-transporting material, MADN can reduce the amount of hole carriers injected into the device - leading to a well-balanced carrier recombination [2].
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure
Chemical structure of 2-Methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN)
Highly efficient and stable sky blue organic light-emitting devices, M-F. Lin et al., Appl. Phys. Lett. 89, 121913 (2006); doi: 10.1063/1.2356903.
Study of efficient and stable organic light-emitting diodes with 2-methyl-9,10-di(2-naphthyl)anthracene as hole-transport material by admittance spectroscopy, M-H. Ho et al., Appl. Phys. Lett. 94, 023306 (2009); doi: 10.1063/1.3072616.
Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices, M-T. Lee et al., Adv. Mater.,17, 2493–2497 (2005); DOI: 10.1002/adma.200501169.
Optimizing the Charge Balance of Fluorescent OrganicLight-Emitting Devices to Achieve High External QuantumEffi ciency Beyond the Conventional Upper Limit, Y-J. Pu et al., Adv. Mater., 24, 1765–1770 (2012); DOI: 10.1002/adma.201104403.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.