Tungsten Disulfide Powder


500 mg

In stock (price excludes taxes)
Order Code: M2110C1
MSDS sheet

Pricing

Product Code Quantity Price
M2110C1 500 mg £168.6
M2110C1 1 g £269.8


General Information

CAS number 12138-09-9
Chemical formula WS2
Molecular weight 247.97 g/mol
Bandgap 1.4 - 2.01 eV [1]
Synonyms Tungsten sulphide, Tungsten sulfide, Tungsten (IV) sulfide
Classification / Family Transition metal dichalcogenides (TMDCs), 2D Semiconductor Materials, NIR band-gap, Nano-electronics, Nano-photonics, Transistors, Photovoltaics, Materials science

Product Details

Form Powder
Preparation Synthetic - Chemical Vapour Transport (CVT)
Purity ≥ 99.995%
Structure Hexagonal (2H)
Electronic properties 2D semiconductor
Melting point 1250 °C (lit.)
Colour Black

 

General Description

One of the most distinctive features of tungsten disulfide (WS2) is its performance as a lubricant, even under harsh conditions (e.g. high temperature and high pressure). Its coefficient of friction (CoF) of 0.03 is nearly unmatched.

phase structure of ws2: 1T-WS2 and 2H-WS2
The structures of Tungsten Disulfide (WS2) 1T (octahedral) and 2H (hexagonal).

 

Depending on the techniques used in its preparation, exfoliated 2D WS2 layers have three crystal phases: octahedral (1T) and hexagonal (2H and 3R). Such phases provide opportunities for structure engineering at an atomic level to develop new optoelectronic properties. It is known that the 2H (antiparallel) and 3R (parallel) hexagonal phases are semiconducting.

Of the two hexagonal phases, 2H is the more stable form. The octahedrally-coordinated 1T phase is not stable in a bulk form, and is associated solely with single-layer films. It is believed that the 1T phase is metallic and can be transformed from 2H WS2 by electron doping (e.g. by electron irradiation or lithium ion intercalation).

 

Applications

Nanosheets and nanoparticles prepared from electronic pure WS2 powders find applications in nanoelectronics, optoelectronics, gas-sensing devices, hydrogen evolution reactions, and energy storage devices. Like most TMDCs, they are of great interest in condensed matter physics and are widely explored for their photonic and optoelectronic properties.

Synthesis

Tungsten disulfide (WS2) powder is obtained via the CVT method, with a purity in excess of 99.995% achieved.

Usage

WSpowder is suitable for liquid chemical exfoliation to prepare WS2 nanosheets and nanoparticles down to few-layer films. WS2 powder is also used for the preparation of mono-layer and few-layer films via chemical vapour deposition (CVD).

 

Literature and Reviews

  1. Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers, A. Elı´as et al., ACS Nano, 7 (6), 5235–5242 (2013); DOI: 10.1021/nn400971k.
  2. An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two dimensional semiconducting nanosheets, R. Jha et al., J. Mater. Sci., 52:7256–7268 (2017); DOI 10.1007/s10853-017-0962-4.
  3. Enhanced Catalytic Activities of Surfactant Assisted Exfoliated WS2 Nanodots for Hydrogen Evolution, X Zhao et al., ACS Nano 2016, 10, 2159−2166; DOI: 10.1021/acsnano.5b06653.
  4. Cost-effective liquid-phase exfoliation of molybdenum disulfide by prefreezing and thermal-shock, L. Taran et al., Adv. Powder Tech., 28, 2996–3003 (2017); DIO: 10.1016/j.apt.2017.09.010.
  5. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution, D. Voiry et al., Nat. Mater., 12, 850–855 (2013); DOI: 10.1038/NMAT3700.