Methylammonium bromide (MABr)

Order Code: M571
MSDS sheet


(excluding Taxes)


Methylammonium bromide (MABr) is a precursor for the synthesis of organic-inorganic hybrid perovskites for use in FETs, LEDs and PVs.



 Grade Order Code Quantity Price
98% purity M572 10 g £106.3
98% purity M572 25 g £202.9
>99.9% purity M571 5 g £103
>99.9% purity M571 10 g £169
>99.9% purity M571 25 g £328

Note: Looking for a bulk order (100 g or more)? Please contact us for a quote.


General Information

CAS number 6876-37-5
Chemical formula CH6BrN
Molecular weight 111.97 g/mol
  • MABr
  • Methylamine hydrobromide
HOMO / LUMO n.a.
Classification / Family Organic photovoltaics, Light-emitting diodes, Perovskite precursor materials

Product Details


98% (M572)

>99.5% (M571 further purified by recrytalisation of M572)

Melting point 296 °C
Colour White crystals/powder

Chemical Structure

chemical structure of MABr, Methylammonium bromide
Chemical structure of methylammonium bromide (MABr), CAS No. 6876-37-5.



Methylammonium bromide (MABr) is a precursor of MAPbBr3 perovskites. Having a band gap of 2.3 eV (HOMO 5.68 eV, LUMO 3.38 eV) [1], MAPbBr3 perovskites have been used to tune the band gap of mixed MAPbX3 (where X is the halide I, Br and/or Cl mixtures) [2,3,4,5,6]. For this reason, bromide MAPbBr3 perovskites can be utilised as light absorbers for high-energy photons, and can serve as the front cell in tandem cells. This perovskite can provide a higher open-circuit voltage in perovskite solar cells than the iodide analogue.

High-efficiency solar cells, with a VOC of up to 1.40 V, a fill factor (FF) of 79%, and a PCE of 6.7% have been reported for pure MAPbBr3 perovskite solar cells [1].

It has also been demonstrated that MAPbBr3 nanoplatelets can be employed in light-emitting diodes, exhibiting bright photoluminescence (PL) at 529 nm, with a narrow spectral band and a quantum yield up to 85% [7].


Device structure FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [8]
Jsc (mA cm-2) 23.3
Voc (V) 0.94
FF (%) 65
PCE 14.2


Literature and Reviews

  1. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor, S. Ryu et al., Energy Environ. Sci., 7, 2614–2618 (2014). DOI: 10.1039/c4ee00762j.
  2. Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition, Y. Zhao et al., J. Am. Chem. Soc., 136 (35), 12241–12244 (2014). DOI: 10.1021/ja5071398.
  3. High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite, E. Edri et al., J. Phys. Chem. Lett., 4 (6), 897–902 (2013). DOI: 10.1021/jz400348q.
  4. Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges, A. Sadhanala et al., J. Phys. Chem. Lett., 5, 2501-2505 (2014).
  5. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, J-H. Noh et al., Nano Lett., 13, 1764-1769 (2013).
  6. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles, S. Gonzalez-Carrero et al., J. Mater. Chem. A, 3, 9187-9193 (2015). DOI: 10.1039/C4TA05878J.
  7. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets, Y. Ling et al., Adv. Mater. 2015, DOI: 10.1002/adma.201503954.
  8. Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.