FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

Methylammonium Bromide (MABr)

CAS Number 6876-37-5

Materials, Perovskite Materials, Perovskite Precursor Materials

Product Code M571-5g
Price $182 ex. VAT

Methylammonium bromide for the synthesis of perovskites

High purity precursor available to buy online (or request a quote) for fast, secure dispatch


Specifications | MSDS | Literature and Reviews | Resources and Support


Methylammonium bromide (MABr) is a precursor for the synthesis of organic-inorganic hybrid perovskites for use in FETs, LEDs and PVs.

Methylammonium Bromide (MABr) from Ossila was used in a high-impact paper (IF 9.229)

Methylammonium Bromide (MABr) from Ossila was used in the high-impact paper (IF 9.229), Using Soft Polymer Template Engineering of Mesoporous TiO2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency, Q. Lian et al., ACS Appl. Mater. Interfaces 12, 18578–18589 (2020); DOI: 10.1021/acsami.0c02248.

General Information


CAS number 6876-37-5
Chemical formula CH6BrN
Molecular weight 111.97 g/mol
Synonyms
  • MABr
  • Methylamine hydrobromide
HOMO / LUMO n.a.
Classification / Family Organic photovoltaics, Light-emitting diodes, Perovskite precursor materials

Product Details


Purity

98% (M572)

>99.5% (M571 further purified by recrystallisation of M572)

Melting point 296 °C
Appearance White crystals/powder

Chemical Structure


chemical structure of MABr, Methylammonium bromide
Chemical structure of methylammonium bromide (MABr), CAS No. 6876-37-5

Applications


Methylammonium bromide (MABr) is a precursor of MAPbBr3 perovskites. Having a band gap of 2.3 eV (HOMO 5.68 eV, LUMO 3.38 eV) [1], MAPbBr3 perovskites have been used to tune the band gap of mixed MAPbX3 (where X is the halide I, Br and/or Cl mixtures) [2,3,4,5,6]. For this reason, bromide MAPbBr3 perovskites can be utilised as light absorbers for high-energy photons, and can serve as the front cell in tandem cells. This perovskite can provide a higher open-circuit voltage in perovskite solar cells than the iodide analogue.

High-efficiency solar cells, with a VOC of up to 1.40 V, a fill factor (FF) of 79%, and a PCE of 6.7% have been reported for pure MAPbBr3 perovskite solar cells [1].

It has also been demonstrated that MAPbBr3 nanoplatelets can be employed in light-emitting diodes, exhibiting bright photoluminescence (PL) at 529 nm, with a narrow spectral band and a quantum yield up to 85% [7].

Device structure FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [8]
Jsc (mA cm-2) 23.3
Voc (V) 0.94
FF (%) 65
PCE 14.2

MSDS Documentation


Methylammonium bromide MSDSMethylammonium bromide MSDS sheet

Pricing


Grade Order Code Quantity Price
98% purity M572 10 g £140
98% purity M572 25 g £260
>99.5% purity M571 5 g £140
>99.5% purity M571 10 g £220
>99.5% purity M571 25 g £420

Note: Looking to place a bulk order (100 g or more) Please contact us for a quote.

Literature and Reviews


  1. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor, S. Ryu et al., Energy Environ. Sci., 7, 2614–2618 (2014). DOI: 10.1039/c4ee00762j.
  2. Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap Ch2Nh2PbI2Br Nanosheets via Thermal Decomposition, Y. Zhao et al., J. Am. Chem. Soc., 136 (35), 12241–12244 (2014). DOI: 10.1021/ja5071398.
  3. High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite, E. Edri et al., J. Phys. Chem. Lett., 4 (6), 897–902 (2013). DOI: 10.1021/jz400348q.

Resources and Support


How to Make Efficient Perovskite Solar Cells in a Glove Box

Various other perovksites and transport materials, along with references and examples of their uses, can be found on our "Ultimate Guide to Perovskites" page - but we thought it would be useful to demonstrate an example of how to make a PSC (that can acheive over 19% PCE), from start to finish. We've also tried to include some helpful tips to perfect your technique.

Learn more...
Return to the top