DPAVBi


Order Code: M2189A1
Not in stock

Pricing

Grade Order Code Quantity Price
Sublimed (>99% purity) M2189A1 500 mg £213.00
Sublimed (>99% purity) M2189A1 1 g £363.00

General Information

CAS number 119586-44-6
Full name 4,4′-Bis[4-(di-p-tolylamino)styryl]biphenyl
Chemical formula C56H48N2
Molecular weight 748.99 g/mol
Absorption λmax 405 nm in THF
Fluorescence λmax 474 nm in THF
HOMO/LUMO HOMO = 5.3 eV, LUMO = 2.6 eV [1]
Synonyms 4,4'-[Biphenyl-4,4'-diyldi(E)ethene-2,1-diyl]bis[N,N-bis(4-methylphenyl)aniline]
Classification / Family Triarylamines, Blue fluorescent emitter and dopant materials, OLED materials, Organic electronics, Sublimed materials.

Product Details

Purity Sublimed > 99% (HPLC)
Melting point > 300 °C (0.5% weight loss)
Appearance Greenish-yellow crystals/powder

 

dpavbi, 119586-44-6
Chemical structure of DPAVBi; CAS No. 119586-44-6.

 

Applications

DPAVBi, 4,4′ -Bis[4-(di-p-tolylamino)styryl]biphenyl is widely used as a sky-blue fluorescent emitter in OLED devices. It is also used as a blue dopant for white TADF-OLED devices.

Bearing two triarylamine end units, DPAVBi is electron-rich in nature. It has applications as a hole-transporting material in organic electronic devices.

 

Device structure ITO/HATCN (5 nm)/TAPC (40 nm)/2F-DPA*:DPAVBi (7%, 20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) [1]
Colour Blue blue
Max. Power Efficiency 7.7 lm W1
Max. Current Efficiency 9.6 cd/A
Max. Luminance 27,638 cd/m2
Max. EQE 5.2%
Device structure ITO/m-MTDATA(15 nm)/a-NPD (40 nm)/PATSPA*:DPAVBi (1% wt%, 30 nm)/Alq3 (40 nm)/LiF/Al [2]
Colour Blue blue
Max. Current Efficiency 7.5cd/A
Max. Luminance 48,128 cd/m2
Max. EQE 6.3%
Device structure PET/Graphene/GraHIL (50 nm)/NPB (20 nm)/NPB:TBADN:rubrene (1%) (10 nm)/NPB:TBADN:DPAVBi (5%) (10 nm)/TBADN:DPAVBi (5%) (15 nm)/Bebq2 (20 nm)/BaF2 (1 nm)/aluminium (130 nm) [3]
Colour White white
Max. Power Efficiency 37.2 lm W1
Max. Current Efficiency 30.2 cd/A
Device structure ITO (95 nm)/ HATCN (10 nm)/ NPB (40 nm)/ TCTA (10 nm)/ 0.8 wt.% TBRb: 10wt.% 4CzPN: mCBP (12 nm)/ 30 wt.% Bepp2: mCBP (5 nm)/ Bepp2 (3 nm)/ 5 wt.% DPAVBi:MADN (8 nm)/ Bepp2 (50 nm)/ LiF (1 nm)/ Al (100 nm) [4]
Colour White white
Max. Power Efficiency 37.6 lm W1
Max. Current Efficiency 38.1 cd/A
Max. EQE 11.9%

*For chemical structure information, please refer to the cited references

 

Literature and Reviews

  1. Fluorinated anthracene derivatives as deep-blue emitters and host materials for highly efficient organic light-emitting devices, L. Li et al., RSC Adv., 5, 59027 (2015); DOI: 10.1039/c5ra02357b.
  2. Silicon-Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light-Emitting Devices, Y. Lyu et al., Adv. Mater., 20, 2720–2729 (2008); DOI: 10.1002/adma.200602885.
  3. Extremely efficient flexible organic light-emitting diodes with modified graphene anode, T. Han et al., Nat. Photonics, 6, 105 (2012); DOI: 10.1038/NPHOTON.2011.318.
  4. Exciton-Adjustable Interlayers for High Efficiency, Low Efficiency Roll-Off, and Lifetime Improved Warm White Organic Light-Emitting Diodes (WOLEDs) Based on a Delayed Fluorescence Assistant Host, Z. Wang et al., Adv. Funct. Mater., 28, 1706922 (2018); DOI: 10.1002/adfm.201706922.

 


To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.