DMAC-BP


Not in stock (price excludes taxes)
Order Code: M2090A1

General Information

CAS number 1685287-55-1
Chemical formula C43H36N2O
Molecular weight 596.76 g/mol
Absorption n/a
Fluorescence λem  506 nm (in film)
HOMO/LUMO HOMO = -5.8 eV, LUMO = -3.1 [1]
Synonyms Bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone 
Classification / Family Electron transport layer (ETL) materials, Solution-processed OLED materials, TADF green emitter materials, PHOLEDs, Sublimed materials

Product Details

Purity >99.7% (sublimed)
Melting Point TGA Td = 410 oC (5% weight loss)
Appearance Light yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

DMAC-BP chemical structure, 1685287-55-1
Chemical structure of Bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone (DMAC-BP); CAS No. 1685287-55-1.

 

Applications

DMAC-BP, bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone is better known as a green Thermally Activated Delayed Fluorescence (TADF) emitter.

Due to the short conjugation length of the DMAC and BP group, a higher energy of the lowest locally-excited triplet state (3LE) is achieved. This energy is almost equal to that of the triplet charge-transfer state (3CT). The difference of the lowest singlet and triplet excited states ΔEST  is 0.07 eV [2].

Compared to mCP-doped films, neat films of DMAC–BP have a slightly red-shifted emission band with a maximum of 506 nm, a slightly lower photoluminescence quantum yield (PLQY) of 0.85, and TADF lifetime of 2.7 μs.

 

Device structure ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/DMAC-BP:DMIC-TRZ (30 nm)/B3PyMPM (40 nm)/LiF (1 nm)/Al (150 nm) [1]
Colour Green  green

Max. Power Efficiency

52.9 lm W1
Max. EQE 21%
Device structure ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/DMAC-BP:26DCzPPy (30 nm)/B3PyMPM (40 nm)/LiF (1 nm)/Al (150 nm) [1]
Colour Green  green

Max. Power Efficiency

38.4 lm W1
Max. EQE 19%
Device structure ITO/MoO3 (1 nm)/DMAC-BP (60 nm)/TPBi (60 nm)/LiF (1 nm)/Al [2]
Colour Green  green

Max. Luminance

51,100 cd/m2

Power Efficiency@100 cd/m2

25 lm W1
Max. EQE 10.6%
Device structure ITO/MoO3 (1 nm)/mCP (40 nm)/DMAC-BP (30 nm)/TPBi (50 nm)/LiF (1 nm)/Al [2]
Colour Green  green

Max. Luminance

45,300 cd/m2

Power Efficiency@100 cd/m2

59 lm W1
Max. EQE 18.9%

 

Literature and Reviews

  1. Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet–Triplet Splitting, D. Zhang et al., ACS Appl. Mater. Interfaces, 9 (5), 4769–4777 (2017); DOI: 10.1021/acsami.6b15272.
  2. Nearly 100% Internal Quantum Effi ciency in Undoped Electroluminescent Devices Employing Pure Organic Emitters, Q, Zhang et al., Adv. Mater., 27, 2096–2100 (2015); DOI: 10.1002/adma.201405474.
  3. Singlet–Triplet Splitting Energy Management via Acceptor Substitution: Complanation Molecular Design for Deep-Blue Thermally Activated Delayed Fluorescence Emitters and Organic Light-Emitting Diodes Application, X. Cai et al., Adv.