FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M2090A1-100mg
Price £300 ex. VAT

DMAC-BP, green TADF emitter

High-purity (>99.0%) and available online for priority dispatch


DMAC-BP, bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone is better known as a green Thermally Activated Delayed Fluorescence (TADF) emitter.

Due to the short conjugation length of the DMAC and BP group, a higher energy of the lowest locally-excited triplet state (3LE) is achieved. This energy is almost equal to that of the triplet charge-transfer state (3CT). The difference of the lowest singlet and triplet excited states ΔEST is 0.07 eV [2].

TPBi from Ossila was used in a high-impact paper (IF 15.88)

DMAC-BP from Ossila was used in the high-impact paper (IF 29.4), Single-Layer Organic Light-Emitting Diode with Trap-Free Host Beats Power Efficiency and Lifetime of Multilayer Devices,O. Sachnik et al., Adv. Mater., 36 (16), 2311892 (2024); DOI: 10.1002/adma.202311892.

Compared to mCP-doped films, neat films of DMAC–BP have a slightly red-shifted emission band with a maximum of 506 nm, a slightly lower photoluminescence quantum yield (PLQY) of 0.85, and TADF lifetime of 2.7 μs.

General Information


CAS number 1685287-55-1
Chemical formula C43H36N2O
Molecular weight 596.76 g/mol
Absorption n/a
Fluorescence λem 506 nm (in film)
HOMO/LUMO HOMO = -5.8 eV, LUMO = -3.1 [1]
Synonyms Bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone
Classification / Family Electron transport layer (ETL) materials, Solution-processed OLED materials, TADF green emitter materials, PHOLEDs, Sublimed materials

Product Details


Purity >99.0% (sublimed)
Melting Point TGA Td = 410 oC (5% weight loss)
Appearance Light yellow powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials.

Chemical Structure


DMAC-BP chemical structure, 1685287-55-1
Chemical structure of Bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]methanone (DMAC-BP)

Device Structure(s)


Device structure ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/DMAC-BP:DMIC-TRZ (30 nm)/B3PyMPM (40 nm)/LiF (1 nm)/Al (150 nm) [1]
Colour Green green light emitting device
Max. Power Efficiency 52.9 lm W−1
Max. EQE 21%
Device structure ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/DMAC-BP:26DCzPPy (30 nm)/B3PyMPM (40 nm)/LiF (1 nm)/Al (150 nm) [1]
Colour Green green light emitting device
>Max. Power Efficiency 38.4 lm W−1
Max. EQE 19%
Device structure ITO/MoO3 (1 nm)/DMAC-BP (60 nm)/TPBi (60 nm)/LiF (1 nm)/Al [2]
Colour Green green light emitting device
Max. Luminance 51,100 cd/m2
Power Efficiency@100 cd/m2 25 lm W−1
Max. EQE 10.6%
Device structure ITO/MoO3 (1 nm)/mCP (40 nm)/DMAC-BP (30 nm)/TPBi (50 nm)/LiF (1 nm)/Al [2]
Colour Green green light emitting device
Max. Luminance 45,300 cd/m2
Power Efficiency@100 cd/m2 59 lm W−1
Max. EQE 18.9%

Pricing


Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2090A1 100 mg £300
Sublimed (>99.0% purity) M2090A1 250 mg £600
Sublimed (>99.0% purity) M2090A1 500 mg £1050

MSDS Documentation


DMAC-BP MSDSDMAC-BP MSDS sheet

Literature and Reviews


  1. Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet–Triplet Splitting, D. Zhang et al., ACS Appl. Mater. Interfaces, 9 (5), 4769–4777 (2017); DOI: 10.1021/acsami.6b15272.
  2. Nearly 100% Internal Quantum Effi ciency in Undoped Electroluminescent Devices Employing Pure Organic Emitters, Q, Zhang et al., Adv. Mater., 27, 2096–2100 (2015); DOI: 10.1002/adma.201405474.
  3. Undoped highly efficient green and white TADF-OLEDs developed by DMAC-BP: manufacturing available via interface engineering, X. Jiang et al., J Mater Sci: Mater Electron (2020). DOI: 0.1007/s10854-020-04450-z.
Return to the top