FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.
We are currently open and operating as normal. Orders are being processed and dispatched on a daily basis. Click for more information.

DBP


Product Code M2101A1
Price £299.00

5,10,15,20-Tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1′,2′,3′-lm]perylene (DBP), also known as tetraphenyldibenzoperiflanthene, is a promising organic small-molecule semiconductor. It can be used as either an electron donor or acceptor for highly efficient photovoltaic and OLED applications. 

With perylene as an electron-rich core and extended conjugations, DBP can also be used in photovoltaic light-emitting diodes (PVOLEDs) devices as an electron-donating layer (EDL) material.

General Information

CAS number 175606-05-0
Full name 5,10,15,20-Tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1′,2′,3′-lm]perylene
Chemical formula C64H36
Molecular weight 804.97 g/mol
Absorption λmax 333 nm in THF
Fluorescene λem 610 nm in THF
HOMO/LUMO HOMO = 5.5 eV, LUMO = 3.5 eV [1]
Synonyms Tetraphenyldibenzoperiflanthene, Dibenzo{[f,f′]-4,4′,7,7′-tetraphenyl}diindeno[1,2,3-cd:1′,2′,3′-lm]perylene, Red 2 
Classification / Family Perylene derivatives, Hydrocarbons, Red dopant TADF materials, Phosphorescent organic light-emitting devices (PHOLEDs), Photovoltaics, Sublimed materials

Product Details

Purity  Sublimed* >99.0% (HPLC)
Melting point TGA: >350 °C (0.5% weight loss)
Appearance Red powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

Chemical structure of DBP
Chemical Structure of 5,10,15,20-Tetraphenylbisbenz[5,6]indeno[1,2,3-cd:1′,2′,3′-lm]perylene (DBP).

Device Structure(s)

Device structure ITO/α-NPD (30 nm) /DPEPO (10 nm)/TPBi (40 nm)/1 wt% DBP:10 wt% TTPA:mCP (8 nm)/mCP (2 nm)/DMACDPS (7.5 nm)/LiF (0.5 nm)/Al (100 nm) [1]
Colour White white
Max. EQE 12.1%
Max. Power Efficiency 22 Im/W
Device structure ITO/CFx/NPB (60 nm)/ Rubrene+ 1% DBP (40 nm)/DBzA (20 nm)/LiF (1 nm)/Al [2]
Colour >Red red
Current Efficiency@ 20 mA/cm2 5.4 cd/A
EQE@ 20 mA/cm2 4.7%
Power Efficiency@ 20 mA/cm2 5.3 Im/W
Device structure ITO (95 nm)/ HATCN (5 nm)/TAPC (20 nm)/CBP: 7 wt% NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 3 wt% PXZDSO2 (5 nm)/CBP: 5 wt% PXZDSO2: 0.3 wt% DBP (5 nm)/CBP: 3 wt% PXZDSO2 (5 nm)/CBP (3 nm)/CBP: 7 wt% NI-1-PhTPA (10 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm) [3]
Colour White white
Max. Current Efficiency 51.4 cd/A
Max. EQE 19.2%
Max. Power Efficiency 47.5 Im/W
Device structure ITO (95 nm)/ HATCN (5 nm)/TAPC (20 nm)/ CBP: 10 wt% NI-1-PhTPA (10 nm)/CBP (3 nm)/CBP: 3 wt% PXZDSO2 (5 nm)/CBP: 5 wt% PXZDSO2: 0.35 wt% DBP (5 nm)/ CBP: 3 wt% PXZDSO2 (5 nm)/CBP (3 nm)/CBP: 10 wt% NI-1-PhTPA (10 nm);/TmPyPB (55 nm)/LiF (1 nm)/Al (100 nm) [3]
Colour White white
Max. Current Efficiency> 42.2cd/A
Max. EQE 17.3%
Max. Power Efficiency 38.4 Im/W
Device structure ITO (95 nm)/PEDOT:PSS (40 nm)/2 wt% DBP:15 wt% DC-TC*:CBP (40 nm)/TmPyPB (50 nm)/LiF (1 nm)/Al (100 nm) [4]
Colour Red red
Current Efficiency@100 mA/cm2 10.15 cd/A
EQE@ 100 mA/cm2 6.65%

*For chemical structure information, please refer to the cited references.

Pricing

Grade Order Code Quantity Price
Sublimed (>99.0% purity) M2101A1 250 mg £299.00
Sublimed (>99.0% purity) M2101A1 500 mg £509.00
Sublimed (>99.0% purity) M2101A1 1 g £866.00

MSDS Documentation

DBP MSDSDBP MSDS sheet

Literature and Reviews

  1. High-Efficiency White Organic Light-Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters, T. Higuchi et al., Adv. Mater., 27, 2019–2023 (2015); DOI: 10.1002/adma.201404967.
  2. High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer, K. Okumoto et al., Appl. Phys. Lett. 89, 013502 (2006); doi: 10.1063/1.2218833.
  3. High-Efficiency WOLEDs with High Color-Rendering Index based on a Chromaticity-Adjustable Yellow Thermally Activated Delayed Fluorescence Emitter, X. Li et al., Adv. Mater., 28, 4614–4619 (2016); DOI: 10.1002/adma.201505963.
  4. Efficient solution-processed red all-fluorescent organic light-emitting diodes employing thermally activated delayed fluorescence materials as assistant hosts: molecular design strategy and exciton dynamic analysis, D. Chen et al., J. Mater. Chem. C, 5, 5223-5231 (2017); DOI: 10.1039/C7TC01164D.
  5. Organic Solar Cells with Open Circuit Voltage over 1.25 V Employing Tetraphenyldibenzoperiflanthene as the Acceptor, A. Bartynski et al., J. Phys. Chem. C, 120 (34), 19027–19034 (2016); DOI: 10.1021/acs.jpcc.6b06302.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top