FREE shipping to on qualifying orders when you spend or more. All prices ex. VAT.


Product Code M2179A1
Price $288.00 ex. VAT

BTB, ETL material in highly efficient OLED devices

Phosphorescent host material for green and red LEDs

BTB, a triazine compound, namely 4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl, is used as an electron-transport material in organic light-emitting devices (OLEDs) due to its electron deficiency from the two triazine units.

With electron mobility greater than 10−4 cm2V−1 s−1, BTB demonstrates an electron mobility 10-fold greater than that of the widely-used material tris(8-hydroxyquinoline) aluminium (Alq3). OLEDs incorporating BTB as the electron transport layer exhibit lower driving voltages and higher efficiencies - relative to those incorporating Alq3.

BTB, like other electron-deficient materials (such as T2T), can be used as a phosphorescent host material for green and red light-emitting diodes.

General Information

CAS number 266349-83-1
Full name 4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl, 4,4'-bis-[2-(4,6-diphenyl-1,3,5-triazinyl)]-1,10-biphenyl
Chemical formula C34H28N6
Molecular weight 520.62 g/mol
Absorption n.a.
Fluorescence n.a.
HOMO/LUMO HOMO = 6.18 eV, LUMO = 2.14 eV [1]
Classification / Family Triazine derivatives, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, TADF materials.

Product Details

Purity Sublimed > 99% (LCMS)
Melting point 362 °C (lit.); Tg = 137 °C
Appearance White crystals/powder

Chemical Structure

chemical structure of BTB
Chemical Structure of BTB

Device Structure(s)

Device structure Al/NPD (40 nm)/CPCBPTz*:Ir(mppy)3 (10 vol.%, 30 nm)/BTB (30 nm)/LiQ (0.8 nm)/Al (80 nm) [1]
Colour Green green light emitting device
Max. Power Efficiency 25.5. ± 9.1 lm W−1
Max. Current Efficiency 20.3 ± 6.6 cd/A
Max. EQE  8.2 ± 0.9%
Device structure Al/NPD (40 nm)/CPCBPTz*:Ir(mppy)3 (10 vol.%, 15 nm)/BCzPh:Ir(mppy)3 (10 vol.%, 15 nm)/BTB (30 nm)/LiQ (0.8 nm)/Al (80 nm) [1]
Colour Green green light emitting device
Max. Power Efficiency 23.8 ± 3.6 lm W−1
Max. Current Efficiency 15.4 ± 0.8 cd/A
Max. EQE  8.5 ± 0.4%
Device structure ITO/NPB (60 nm)/Alq3:0.6 wt% C545T (15 nm)/BTB (45 nm)/Mg:Ag [2]
Colour Green green light emitting device
Max. Power Efficiency 10.18 lm W−1
Max. Current Efficiency 10.53 cd/A


Grade Order Code Quantity Price
Sublimed (>99% purity) M2179A1 100 mg £230
Sublimed (>99% purity) M2179A1 250 mg £460
Sublimed (>99% purity) M2179A1 500 mg £800
Sublimed (>99% purity) M2179A1 1 g £1350

MSDS Documentation


Literature and Reviews

  1. Mapping Recombination Profiles in Single-, Dual-, and Mixed-Host Phosphorescent Organic Light Emitting Diodes, P. Kuttipillai et al., Org. Electron., 57, 28-33 (2018); 10.1016/j.orgel.2018.02.025.
  2. High electron mobility triazine for lower driving voltage and higher efficiency organic light emitting devices, R. Klenkler et al., Org. Electron., 9, 285–290 (2008); doi: 10.1016/j.orgel.2007.11.004.
  3. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs, H. Chen et al., J. Mater. Chem., 19, 8112–8118 (2009); DOI: 10.1039/b913423a.

To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.

Return to the top