Titanium Diselenide (TiSe2) Powder and Crystal

Low price, high purity 2D metal titanium diselenide powder and crystals
Titanium diselenide (TiSe2) is a family member of Group IV transition metal dichalcogenides (TMDCs), and is of great interest as one of the typical charge density wave (CDW) materials. It is known that the CDW characteristics of TiSe2 can be changed; they are typically suppressed. In some cases, this leads to superconductivity or magnetic order by applying high pressure or intercalation.
TiSe2 has an octahedral crystal structure (1T, space group D3d) with van der Waals stacked layers. In its bulk form, 1T-TiSe2 undergoes a phase transition from a semimetal (1 × 1 × 1 normal phase) to a commensurate CDW (2 × 2 × 2 CDW) at around 200 K. Recent discoveries have demonstrated that superconductivity in TiSe2 can be induced either by field-effect doping of few-layer TiSe2, or copper doping to form CuxTiSe2. In both cases, the suppression of the CDW is considered essential to achieve superconductivity.
TiSe2 has an electronic structure near the Fermi energy level comparable to that of a semiconductor. Its valence and conduction bands overlap slightly through an indirect gap. Rather interestingly, TiSe2 has an exotic ground state, the 'excitonic insulator' phase.
We supply low price titanium diselenide in several different forms for a range of applications.
Titanium diselenide powder

Can be used for preparation of titanium diselenide nanoplates nano-platelets and ultrathinthin films
Sold by weight
≥ 99.995% purity
From £269.00
Titanium diselenide crystal by size

Can be used to produce single or few-layer titanium diselenide sheets via mechanical or liquid exfoliation
Small (≥10mm2) or medium (≥25mm2) crystals available*
≥ 99.999% purity
From £395.00
*Typical representative size, areas/dimensions may vary
Bulk single titanium diselenide crystal is most commonly used as sources from which single or few-layer sheets can be obtained via either mechanical or liquid exfoliation.

Perform electrical and optical measurements without expensive lithography equipment
- Platinum FET test chips optimized for 2D materials, just £149.00
- Developed with researchers in the field to speed up research
- Simplifies electrical measurements on small 2D crystals
- Transfer your crystal across the channel and start measuring
Find out more
Titanium diselenide powder can also be used to prepare TiSe2 nanosheets and nanoparticles by liquid-exfoliation (normally assisted by sonication).
Key Product Data
- High purity, low price titanium diselenide
- Available as a powder or as individual crystal
- Can be used to produce single or few-layer sheets
- Free worldwide shipping on qualifying orders
Structure and Properties of 2D Titanium Diselenide
After exfoliation of crystals or powder, titanium diselenide typically has the following properties:
- Hexagonal (1T) structure (space group: P3m1 D3d)
- CDW characteristics of TiSe2 can be changed or suppressed
- Superconductivity in TiSe2 can be induced either by field-effect doping of few-layer TiSe2, or copper doping to form CuxTiSe2
Applications of Titanium diselenide
Titanium diselenide single crystals can be used to prepare monolayer and few-layer TiSe2 by mechanical or liquid exfoliation. Titanium diselenide powder is suitable for liquid chemical exfoliation to prepare TiSe2 nanosheets and nanoparticles down to few-layer films.
Titanium diselenide has potential applications in superconductors, optoelectronics, advanced low‐power electronics, voltage-controlled oscillators, and ultra-fast electronics.
Technical Data
CAS number | 12067-45-7 |
Chemical formula | TiSe2 |
Molecular weight | 205.79 g/mol |
Bandgap | n.a. |
Preparation | Synthetic - Chemical Vapour Transport (CVT) |
Structure | Octahedral (1T) |
Electronic properties | Semimetal, Charge density waves (CDW) |
Melting point | n.a. |
Colour | Dark brown |
Synonyms | Titanium selenide (TiSe2), Bis(selanylidene)titanium |
Classification / Family | Transition metal dichalcogenides (TMDCs), Charge density wave (CDW), Superconductivity, Nano-electronics, Nano-photonics, Photovoltaic, Materials science |
Product Details
Form | Purity |
Titanium diselenide Powder | ≥ 99.995% |
Titanium diselenide Crystal | ≥ 99.999% |
MSDS Documents
Structure of Titanium Diselenide
TiSe2 has an octahedral crystal structure (1T, space group D3d) with van der Waals stacked layers. Monolayer TiSe2 consists of stacked Se–Ti–Se atomic layers, in which Ti and Se atoms are strongly bound within the layer. Ti atom is located in the center of the octahedral, which is the inversion symmetry point.
Applications of Titanium Diselenide
Titanium diselenide has potential applications in optoelectronics, advanced low‐powerelectronics, superconductors, voltage-controlled oscillators, and ultra-fast electronics.
Mono- or few-layer TiSe2 has potential applications in controllable-switch electronic devices, and quantum information processing (based on CDW).
The electron doping due to the Li intercalation and the expansion of the interlayer spacing between TiSe2 layers due to the intercalation of diamines suppress the charge density wave transition and lead to the appearance of superconductivity. Also Mg-ion battery with a micro-sized TiSe2 cathode shows rechargeable performance at ambient temperature.
Pricing Table (All)
Form | Size/Weight* | Product Code | Price |
Powder | 1 g | M2151C1 | £269.00 |
Crystal | Small (≥ 10 mm2) | M2151A10 | £396.00 ea. |
*typical representative size, areas/dimensions may vary
Shipping is free for qualifying orders.
Literature and Reviews
- Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride, L. Li et al., Appl. Phys. Lett. 109, 141902 (2016); doi: 10.1063/1.4963885.
- Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2, K. Zhang et al., Sci. Bull., 63, 426–432 (2018); doi: 10.1016/j.scib.2018.02.018.
- Unconventional Charge-Density-Wave Transition in Monolayer 1T‑TiSe2, K. Sugawara et al., ACS Nano, 10, 1341−1345 (2016); DOI: 10.1021/acsnano.5b06727.
- Raman Characterization of the Charge Density Wave Phase of 1T-TiSe2: From Bulk to Atomically Thin Layers, D. Duong et al., ACS Nano, 11, 1034−1040 (2017); DOI: 10.1021/acsnano.6b07737.
- Hydrogenation-driven phase transition in single-layer TiSe2, F. Iyikanat et al, Nanotechnology 28, 495709 (2017); doi: 10.1088/1361-6528/aa94ab.
- Controlled Synthesis of Two-Dimensional 1T‑TiSe2 with Charge Density Wave Transition by Chemical Vapor Transport, J. Wang et al., J. Am. Chem. Soc., 138, 16216−16219 (2016); DOI: 10.1021/jacs.6b10414.
- Layer- and substrate-dependent charge density wave criticality in 1T–TiSe2, S. Kolekar et al., 2D Mater. 5, 015006 (2018); DIO: 10.1088/2053-1583/aa8e6f.
- Charge density wave transition in single-layer titanium diselenide, P. Chen et al., Nat. Commun., 6:8943 (2015); DOI: 10.1038/ncomms9943.
- Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe2, P. Goli et al, Nano Lett., 12, 5941−5945 (2012); doi: 10.1021/nl303365x.
- Stable charge density wave phase in a 1T–TiSe2 monolayer, B. Singh et al., Phys. Rev., 95, 245136 (2017); DIO: 10.1103/PhysRevB.95.245136.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.