Titanium Diselenide (TiSe2) Powder and Crystal


Product Code M2151C1
Not in stock
Price [loading]

Low price, high purity 2D metal titanium diselenide powder and crystals

For the development of next-generation electronics, optoelectronics, and nanotechnology

Titanium diselenide (TiSe2) is a family member of Group IV transition metal dichalcogenides (TMDCs), and is of great interest as one of the typical charge density wave (CDW) materials. It is known that the CDW characteristics of TiSe2 can be changed; they are typically suppressed. In some cases, this leads to superconductivity or magnetic order by applying high pressure or intercalation. 

TiSe2 has an octahedral crystal structure (1T, space group D3d) with van der Waals stacked layers. In its bulk form, 1T-TiSe2 undergoes a phase transition from a semimetal (1 × 1 × 1 normal phase) to a commensurate CDW (2 × 2 × 2 CDW) at around 200 K. Recent discoveries have demonstrated that superconductivity in TiSe2 can be induced either by field-effect doping of few-layer TiSe2, or copper doping to form CuxTiSe2. In both cases, the suppression of the CDW is considered essential to achieve superconductivity.

TiSe2 has an electronic structure near the Fermi energy level comparable to that of a semiconductor. Its valence and conduction bands overlap slightly through an indirect gap. Rather interestingly,  TiSehas an exotic ground state, the 'excitonic insulator' phase.

We supply low price titanium diselenide in several different forms for a range of applications.

Titanium diselenide powder

Titanium diselenide powder

Can be used for preparation of titanium diselenide nanoplates nano-platelets and ultrathinthin films

Sold by weight

≥ 99.995% purity

From £269.00

Titanium diselenide crystal by size

Titanium diselenide crystal

Can be used to produce single or few-layer titanium diselenide sheets via mechanical or liquid exfoliation

Small (≥10mm2) or medium (≥25mm2) crystals available*

≥ 99.999% purity

From £395.00

*Typical representative size, areas/dimensions may vary

Bulk single titanium diselenide crystal is most commonly used as sources from which single or few-layer sheets can be obtained via either mechanical or liquid exfoliation. 

Platinum FET test chips optimized for 2D materials

Perform electrical and optical measurements without expensive lithography equipment

  • Platinum FET test chips optimized for 2D materials, just £149.00
  • Developed with researchers in the field to speed up research
  • Simplifies electrical measurements on small 2D crystals
  • Transfer your crystal across the channel and start measuring

Titanium diselenide powder can also be used to prepare TiSe2 nanosheets and nanoparticles by liquid-exfoliation (normally assisted by sonication). 

Key Product Data

  • High purity, low price titanium diselenide
  • Available as a powder or as individual crystal
  • Can be used to produce single or few-layer sheets
  • Free worldwide shipping on qualifying orders

Structure and Properties of 2D Titanium Diselenide

After exfoliation of crystals or powder, titanium diselenide typically has the following properties:

  • Hexagonal (1T) structure (space group: P3m1 D3d)
  • CDW characteristics of TiSe2 can be changed or suppressed
  • Superconductivity in TiSe2 can be induced either by field-effect doping of few-layer TiSe2, or copper doping to form CuxTiSe2

Applications of Titanium diselenide

Titanium diselenide single crystals can be used to prepare monolayer and few-layer TiSe2 by mechanical or liquid exfoliation. Titanium diselenide powder is suitable for liquid chemical exfoliation to prepare TiSe2 nanosheets and nanoparticles down to few-layer films. 

Titanium diselenide has potential applications in superconductors, optoelectronics, advanced low‐power electronics, voltage-controlled oscillators, and ultra-fast electronics.

Technical Data

CAS number ‎12067-45-7
Chemical formula TiSe2
Molecular weight 205.79 g/mol
Bandgap n.a.
Preparation Synthetic - Chemical Vapour Transport (CVT)
Structure ‎‎Octahedral (1T)
Electronic properties Semimetal, Charge density waves (CDW)
Melting point n.a.
Colour Dark brown
Synonyms Titanium selenide (TiSe2), Bis(selanylidene)titanium
Classification / Family Transition metal dichalcogenides (TMDCs), Charge density wave (CDW), Superconductivity, Nano-electronics, Nano-photonics, Photovoltaic, Materials science

Product Details

Form Purity
Titanium diselenide Powder ≥ 99.995%
Titanium diselenide Crystal ≥ 99.999%

MSDS Documents

Titanium disufide powder MSDSTitanium diselenide powder

Titanium disufide crystal MSDSTitanium diselenide crystal

Structure of Titanium Diselenide

TiSe2 has an octahedral crystal structure (1T, space group D3d) with van der Waals stacked layers. Monolayer TiSe2 consists of stacked Se–Ti–Se atomic layers, in which Ti and Se atoms are strongly bound within the layer. Ti atom is located in the center of the octahedral, which is the inversion symmetry point.

TiSe2 crystal structure

Top and side view of single-layer titanium diselenide (1T-TiSe2)

Applications of Titanium Diselenide

Titanium diselenide has potential applications in optoelectronics, advanced low‐powerelectronics, superconductors, voltage-controlled oscillators, and ultra-fast electronics.

Mono- or few-layer TiSe2 has potential applications in controllable-switch electronic devices, and quantum information processing (based on CDW).

The electron doping due to the Li intercalation and the expansion of the interlayer spacing between TiSe2 layers due to the intercalation of diamines suppress the charge density wave transition and lead to the appearance of superconductivity. Also Mg-ion battery with a micro-sized TiSe2 cathode shows rechargeable performance at ambient temperature.

 


Video by Ossila

Pricing Table (All)

Form Size/Weight* Product Code Price
Powder 1 g M2151C1 £269.00
Crystal Small (≥ 10 mm2) M2151A10 £396.00 ea.

*typical representative size, areas/dimensions may vary

Shipping is free for qualifying orders.

Literature and Reviews

  • Enhancing charge-density-wave order in 1T-TiSe2 nanosheet by encapsulation with hexagonal boron nitride, L. Li et al., Appl. Phys. Lett. 109, 141902 (2016); doi: 10.1063/1.4963885.
  • Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2, K. Zhang et al., Sci. Bull., 63, 426–432 (2018); doi: 10.1016/j.scib.2018.02.018.
  • Unconventional Charge-Density-Wave Transition in Monolayer 1T‑TiSe2, K. Sugawara et al., ACS Nano, 10, 1341−1345 (2016); DOI: 10.1021/acsnano.5b06727.
  • Raman Characterization of the Charge Density Wave Phase of 1T-TiSe2: From Bulk to Atomically Thin Layers, D. Duong et al., ACS Nano, 11, 1034−1040 (2017); DOI: 10.1021/acsnano.6b07737.
  • Hydrogenation-driven phase transition in single-layer TiSe2, F. Iyikanat et al, Nanotechnology 28, 495709 (2017); doi: 10.1088/1361-6528/aa94ab.
  • Controlled Synthesis of Two-Dimensional 1T‑TiSe2 with Charge Density Wave Transition by Chemical Vapor Transport, J. Wang et al., J. Am. Chem. Soc., 138, 16216−16219 (2016); DOI: 10.1021/jacs.6b10414.
  • Layer- and substrate-dependent charge density wave criticality in 1T–TiSe2, S. Kolekar et al., 2D Mater. 5, 015006 (2018); DIO: 10.1088/2053-1583/aa8e6f.
  • Charge density wave transition in single-layer titanium diselenide, P. Chen et al., Nat. Commun., 6:8943 (2015); DOI: 10.1038/ncomms9943.
  • Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe2, P. Goli et al, Nano Lett., 12, 5941−5945 (2012); doi: 10.1021/nl303365x.
  • Stable charge density wave phase in a 1T–TiSe2 monolayer, B. Singh et al., Phys. Rev., 95, 245136 (2017); DIO: 10.1103/PhysRevB.95.245136.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.