PTAA for Perovskite Applications
PTAA, to substantially improve PCE of perovskite solar cells
High quality HTL and EBL semiconducting material
Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), one of the family members of poly(triaryl)amine, is an excellent hole-transporting and electron-blocking semiconducting material due to its electron-rich components. It has been reported that the use of PTAA can substantially improve the open-circuit voltage (VOC) and fill factor (FF) of the cells. Perovskite solar cells based on the use of the hole-transporting materials exhibit a short-circuit current density JSC of 16.5 mA/cm2, VOC of 0.997 V and FF of 0.727.[1]

PTAA from Ossila was used in the high-impact paper (IF 30.85), Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells, E. Jung et al., Adv. Mater., 2002333 (2020); DOI: 10.1002/adma.202002333.
With PTAA as the hole-transport layer (HTL), best results have shown that the incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3, improving the power conversion efficiency of the solar cell to more than 18% under a standard illumination of 100 milliwatts/cm2 [2]. This makes PTAA the best polymer HTL yet for perovskites. Later on, 20.2% was achieved in 2015 with PTAA as the HTL [3].
General Information
CAS number | 1333317-99-9 |
Chemical formula | (C21H19N)n |
Molecular weight | Please see batch details |
HOMO / LUMO | HOMO 5.25 eV LUMO 2.30 eV [6] |
Recommended solvents | Chlorobenzene, chloroform, dichlorobenzene and toluene |
Synonyms |
Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine |
Classification / Family |
Polyamines, Hole-transport layer materials, Electron-blocking layer materials, Organic semiconducting materials, Organic photovoltaics, Polymer solar cells, OLED materials |
Chemical Structure

Device Structure(s)
Device structure |
FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/PTAA/Au [1] |
FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/Au [1] |
JSC (mA cm-2) | 16.4 | 6.8 |
VOC (V) | 0.9 | 0.68 |
FF (%) | 61.4 | 53.8 |
PCE | 9.0 | 2.5 |
Device structure |
FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/PTAA/Au [2] |
JSC (mA cm-2) | 22.5 |
VOC (V) | 1.11 |
FF (%) | 73.2 |
PCE | 18.4 |
Device structure |
FTO/bl-TiO2/mp-TiO2/FAPbI3 (DMSO)/PTAA/Au [3] |
JSC (mA cm-2) | 24.7 |
VOC (V) | 1.06 |
FF (%) | 77.5 |
PCE | 20.2 |
MSDS Documentation
Pricing
Batch | Quantity | Price |
M0511A | 100 mg | £192.00 |
M0511A | 250 mg | £383.00 |
M0511A | 500 mg | £665.00 |
M0511A | 1 g | £1130.00 |
Free worldwide shipping on qualifying orders.
Batch details
Batch | Mw | Mn | PDI | Stock info |
M512 | 27,371 | 13,514 | 2.02 | Discontinued |
M513 | 28,422 | 17,437 | 1.63 | Discontinued |
M514 | 14,000 | 9,150 | 1.53 | Discontinued |
M515 | 33,000 | 12,220 | 2.7 | Discontinued |
M0511A1 | 103,141 | 62,891 | 1.64 | Discontinued |
M0511A2 | 55,000 | 20,370 | 2.7 | Discontinued |
M0511A3 | 13,000 | 9,286 | 1.4 | Discontinued |
M0511A4 | 30,000 | 15,000 | 2.0 | Discontinued |
M0511A5 | 25,000 | 12,500 | 2.0 | Low Stock |
M0511A6 | 13,000 | 8,667 | 1.5 | In Stock |
M0511A7 | 30,000 | 12,500 | 2.4 | In Stock |
Literature and Reviews
- Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, J. Heo et al., Nat. Photonics 7, 486–491 (2013) doi:10.1038/nphoton.2013.80.
- Compositional engineering of perovskite materials for high-performance solar cells, N. Jeon et al., Nature 517, 476–480 (2015), doi:10.1038/nature14133.
- High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, W-S. Yang et al., Science, 348 (6240), 1234-1237 (2015). DOI: 10.1126/science.aaa9272.
- High-efficient solid-state perovskite solar cells without lithium salt in the hole transport material, NANO 09, 1440001 (2014). DOI: 10.1142/S1793292014400013.
- Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells, J. Noh et al., Nano Lett., 13, 1764−1769 (2013), dx.doi.org/10.1021/nl400349b.
- Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays, A. Intaniwet et al., ACS Appl Mater Interfaces. 2(6), 1692-9 (2010). doi: 10.1021/am100220y.
- Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells, A. Lefrançois et al., Sci Rep. 2015; 5: 7768. doi: 10.1038/srep07768.
- Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability, Y. Wang et al., Adv. Funct. Mater., 26, 1375–1381 (2016); DOI: 10.1002/adfm.201504245.
To the best of our knowledge the information provided here is accurate. However, Ossila assume no liability for the accuracy of this page. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. All products are for laboratory and research and development use only, and may not be used for any other purpose including health care, pharmaceuticals, cosmetics, food or commercial applications.