FREE shipping to on qualifying orders when you spend or more, processed by Ossila BV. All prices ex. VAT. Qualifying orders ship free worldwide! Fast, secure, and backed by the Ossila guarantee. It looks like you are visiting from , click to shop in or change country. Orders to the EU are processed by our EU subsidiary.

It looks like you are using an unsupported browser. You can still place orders by emailing us on, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

Graphene Oxide Powders

CAS Number 1034343-98-0

2D Semiconductor Materials, Graphene, Low Dimensional Materials

Product Code M0880A1-250mg
Price $300 ex. VAT

Quality assured

Expert support

Volume discounts

Worldwide shipping

Fast and secure

2D Material for Processing at High Concentrations

High quality and high purity (99.5%) single layer graphene oxide

Overview | Product Information | Related Products

Graphene Oxide Powder

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2D materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1 - 5 µm and 1 - 50 µm. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

High Purity High purity Graphene Oxide

High Purity

High purity Graphene Oxide 99.5%

Worldwide shipping for 1034343-98-0

Worldwide shipping

Quick and reliable shipping

Low price 1034343-98-0

Low price

Low price bismuth oxide (Bi2O3)

Easily dispersed Graphene Oxide


Easily dispersed within solution, allowings processing at high concentrations.

General Information

CAS number 1034343-98-0
Chemical formula CxHyOz
Recommended Solvents H2O, DMF, IPA
Synonyms Single layer GO, Few-layer GO, GO
Classification / Family 2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics

Single-Layer Graphene Oxide Powders

Product Code M0880A1
Flake Size ~ 2 μm
Flake Thickness ~ 1 nm
Single Layer Ratio >99%
Purity >99%
Appearance Black/Brown Sheets/Powder

Few-Layer Graphene Oxide Powders

Product Code M0880A2
Average Number of Graphene Layers 2 – 5 layers
Flake Size/Diameter 4.5 µm
Surface Area 420 m2/g
Purity 99.8%
Appearance Dark grey/brown powder

MSDS Documents

Graphene Oxide Powder MSDSGraphene oxide powders MSDS Sheet

Pricing Table

Batch Quantity Price
M0880A1 250 mg £240
M0880A1 500 mg £380
M0880A2 250 mg £90
M0880A2 500 mg £140
M0880A2 1 g £220
M0880A2 2 g £355

What is Graphene Oxide?

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite, it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers' Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.

Monolayer Graphene Oxide Graphene Oxide SEM
SEM Images of flakes on silicon

Dispersion Guide

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2D materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).


  1. An improved Hummers method for eco-friendly synthesis of graphene oxide, J. Chen et al., Carbon 64, 225-229 (2013);
  2. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology, D. A. Jasim et al., 2D Mater. 3, 014006 (2016); doi:10.1088/2053-1583/3/1/014006.
  3. Preparation and Characterization of Graphene Oxide, J. Song et al., J. Nanomater., 276143 (2014);
  4. The chemistry of graphene oxide, D. R. Dreyer et al., Chem. Soc. Rev., 39, 228–240 (2010); DOI: 10.1039/b917103g.
  5. Preparation of small-sized graphene oxide sheets and their biological applications, M. Zhang et al., J. Mater. Chem. B, 4, 121 (2016); DOI: 10.1039/c5tb01800e.
  6. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, D. Chen et al., Chem. Rev., 112, 6027−6053 (2012);
  7. Preparation of Graphitic Oxide, W. Hummer et al., J. Am. Chem. Soc., 80 (6), 1339–1339 (1958); DOI: 10.1021/ja01539a017.
  8. Improved Synthesis of Graphene Oxide, D. C. Marcano et al., ACS Nano, 4 (8), 4806–4814 (2010); DOI: 10.1021/nn1006368.
  9. Fast and fully-scalable synthesis of reduced graphene oxide, S. Abdolhosseinzadeh et al., Sci. Rep., 5:10160 (2015); DOI: 10.1038/srep10160.

We stock a wide range of 2D materials available to purchase online. Please contact us if you cannot find what you are looking for.

To the best of our knowledge the information provided here is accurate. The values provided are typical at the time of manufacture and may vary over time and from batch to batch. Products may have minor cosmetic differences (e.g. to the branding) compared to the photos on our website. All products are for laboratory and research and development use only.

Return to the top