8-Quinolinolato lithium

Order Code: M731
MSDS sheet

Price

(excluding Taxes)

£98.00


Pricing

 Grade Order Code Quantity Price
Sublimed (>99% purity) M731 1 g £98
Unsublimed (>98% purity) M732 5 g £111
Sublimed (>99% purity) M731 5 g £366

General Information

CAS number 25387-93-3
Chemical formula C9H6LiNO
Molecular weight 151.09 g/mol
Absorption λmax  261 nm (in THF)
Fluorescence λem 331 nm (in THF)
HOMO/LUMO HOMO = 5.58 eV, LUMO = 3.15 eV [1]
Synonyms Liq, lithium-8-hydroxyquinolinolate, lithium 8-quinolinolate, 8-Hydroxyquinolinolato lithium
Classification / Family Organic Light-Emitting Diodes, Organic electronics

 

Product Details

Purity

Sublimed* >99%

Unsublimed >98%
Melting point 366-368 ºC (lit.)
TGA Td ≥ 430 oC (5%)
DSC Onset: 365 ± 1 oC
Colour Light yellow powder

*Sublimation is a technique used to obtain ultra pure grade chemicals to get rid of mainly trace metals and inorganic impurities. Sublimation happens under certain pressure for chemicals to only go through two physical stages, from a solid sate to vapour (gas) and then the vapour condensed to a solid state on a cool surface (referred to as cold finger). The most typical examples of sublimation are iodine and dry ice. For more details about sublimation, please refer to sublimed materials for OLEDs and perovskites and our collection of sublimed materials.

 

Chemical Structure

chemical structure of 8-Hydroxyquinolinolato-lithium (liq)
Chemical Structure of 8-Hydroxyquinolinolato-lithium (Liq); CAS No. 25387-93-3; Chemical Formula C9H6LiNO.

 

Applications

8-Hydroxyquinolinolato-lithium (Liq), coupled with aluminium (Al), is commonly used as electron injection layer (EIL) materials in organic electronic devices. Normally, only very thin layer (1-2 nm) Liq is needed for efficient electron injection from the electrode to electron transport layer (ETL) materials.

Liq/Al has also been widely known to be an effective cathode system towards general electron transport layer materials. It has also been reported that ultrathin Liq interlayers can greatly enhance the operational stability of light-emitting diodes [2].

Device structure ITO (150 nm)/NPB (70 nm)/mCP:Firpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% (30 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [3]
Colour White  white
Max. Luminance 37,810 cd/m2 
Max. Current Efficiency 48.1 cd/A
Device structure ITO (180 nm)/TAPC (60 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/Ir(ppz)3 (1.5 nm)/mCP:Firpic–8 wt% (10 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [4]
Colour Blue  blue
Luminance@200 cd/m2 32,570 cd/m2
Max. Current Efficiency 43.76 cd/A
Max. EQE 23.4%
Max. Power Efficiency 21.4 lm W−1 
Device structure     Al/MoO3 (3 nm)/mCP (50 nm)/Ir(tfmppy)2(tpip)* (0.5 nm)/TPBi (2.5 nm)/mCP (2.5 nm)/Ir(tfmppy)2(tpip) (0.5 nm)/TPBi (10 nm)/Bphen (45 nm)/Liq (1 nm)/Al (1 nm)/Ag (22 nm)/mCP (80 nm) [5]
Colour Green  green
Max. Current Efficiency 126.3 cd/A
Device structure  ITO/ NPB (70 nm)/DPVBi:BCzVBi (15 wt%, 15 nm)/ADN:BCzVBi (15% wt%, 15 nm)/BPhen (30 nm)/ Liq (2 nm)/Al (100 nm) [6]
Colour Deep Blue deep blue
Max. Luminance       8,668 cd/m2
Max. Current Efficiency  5.16 cd/A
Device structure ITO/NPB/DPVBi:BCzVBi-6%/MADN:DCM2-0.5%/Bphen/Liq/Al [7]
Colour White white
Max. Luminance  15,400 cd/m2
Max. Current Efficiency 6.19 cd/A
Device structure  ITO/PEDOT:PSS (40 nm)/ CzDMAC-DPS* (40 nm)/TPBI (40 nm)/Liq (1.6 nm)/Al (100 nm) [8]
Colour Greenish-blue greenish-blue
Max. Current Efficiency       30.6 cd/A
Max. Power Efficiency 12.2 lm W−1
Device structure    

ITO/HTL (100 nm)/CBP:9 wt%DACT-II*(40 nm)/BAlq (30 nm)/Liq/Al [9]

Colour Green  green
Max. EQE 41.3%

*For chemical structure informations please refer to the cited references.

 

Characterisation (TGA and DSC)

DSC/TGA of liq

TGA and DSC trace of 8-Hydroxyquinolinolato-lithium (Liq).

 

Literature and Review

  1. Lithium-Quinolate Complexes as Emitter and Interface Materials in Organic Light-Emitting Diodes,  C. Schmitz et al., Chem. Mater., 12, 3012-3019 (2000).
  2. Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers, DPK. Tsang et al., Sci Rep. 2016; 6: 22463; doi:10.1038/srep22463.
  3. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer, J-K. Kim et al., Sci. Reports, 4, 7009 (2014); DOI: 10.1038/srep07009.
  4. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
  5. High efficiency green phosphorescent top-emitting organic light-emitting diode with ultrathin non-doped emissive layer, X. Shi et al., Org. Electronics, 15, 2408–2413 (2014). http://dx.doi.org/10.1016/j.orgel.2014.07.001.
  6. Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system, B. Lee et al., J. Photon. Energy. 3(1), 033598 (2013), doi:10.1117/1.JPE.3.033598.
  7. High efficient white organic light-emitting diodes using BCzVBi as blue fluorescent dopant,
    Y. Kim et al., J Nanosci. Nanotechnol., 8(9), 4579-83 (2008).
  8. Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters, J. Luo et al., J. Mater. Chem. C, 2016, DOI: 10.1039/C6TC00418K.
  9. Purely organic electroluminescent material realizing 100% conversion from electricity to light,
    H. Kaji et al., Nat. Commun., 6:8476 (2015); DOI: 10.1038/ncomms9476.